Summary

小鼠间质瓣细胞分离研究主动脉瓣体外钙化

Published: May 10, 2021
doi:

Summary

本文描述了通过两步拼贴程序分离小鼠主动脉瓣细胞。分离的小鼠瓣细胞对于执行不同的测定(如 体外 钙化检测)和研究导致主动脉瓣矿化的分子通路非常重要。

Abstract

主动脉瓣细胞的钙化是主动脉狭窄的标志,与瓣膜尖纤维化有关。瓣膜间质细胞(VICs)通过激活其去分化程序,在主动脉狭窄的钙化过程中发挥重要作用。小鼠 VIC 是用于阐明驱动主动脉瓣细胞矿化的信号通路的一个很好的 体外 工具。此处描述的方法,这些作者成功使用,解释了如何获得新分离的细胞。以1毫克/mL和4.5毫克/mL进行两步拼贴手术。第一步对于去除内皮细胞层和避免任何污染至关重要。第二个拼贴剂孵化是促进VIC从组织转移到板。此外,还讨论了分离小鼠瓣膜细胞表型特征的免疫荧光染色程序。此外,钙化检测是使用钙试剂测量程序和阿里扎林红色染色 在体外 进行的。使用小鼠瓣膜细胞原培养物对于测试新的药理靶点以抑制体外细胞矿化至关重要

Introduction

钙化主动脉瓣病(CAVD)是西方人群中最常见的瓣膜心脏病,影响近2.5%的65岁以上的老年人。CAVD影响超过600万美国人,并与传单的机械性质的变化,损害正常的血液流过1,2。目前,没有药理治疗来阻止疾病的进展或激活矿物质回归。治疗CAVD的唯一有效疗法是主动脉瓣置换手术或导管主动脉瓣置换3。因此,必须研究导致阀门矿化的分子机制,以确定新的药理学目标。事实上,未经治疗的主动脉狭窄有若干不良后果,如左心室功能障碍和心力衰竭4。

主动脉瓣由三层组成,称为纤维瘤、海绵状和心室,其中含有以VC为主要细胞型的5。纤维瘤和心室被一层血管内皮细胞(VECs)5覆盖。VEC调节炎症细胞和寄生虫信号的渗透性。机械应力增加可能会影响VEC的完整性,扰乱主动脉瓣的平衡,导致炎症细胞入侵6。扫描电子显微镜分析显示,人类钙化主动脉瓣7的内皮被破坏。

钙化组织的组织学分析揭示了骨细胞和骨囊的存在。此外,在体外和人体瓣膜组织8中观察到VIC的骨分化。这个过程主要是由Runt相关的转录因子2(Runx2)和骨形态遗传蛋白(BMPs)8,9精心策划的。

Protocol

注:这里描述的所有动物程序都已获得西奈山伊坎医学院机构核心和使用委员会的批准。 1. 在从成年小鼠中分离出瓣膜细胞之前的准备 使用 70% v/v 乙醇清洁和消毒 图 1A 中显示的所有手术器械,然后用 70% 乙醇自动清洁手术工作空间 30 分钟。 加入500微升青霉素-链霉素至50ml的10毫米赫佩斯。准备 50 mL 的 1 倍磷酸盐缓冲盐水 (PBS) 的碱度?…

Representative Results

由于木质主动脉瓣的直径通常为1毫米,因此必须集中至少三个阀门来收集一百万个可行的细胞,用于不同的实验程序。VIC 隔离过程的不同步骤显示在图1和图 2中。由于很难手动刮擦瓣膜组织,最好使用涡流产生的剪切应力来去除 VEC。事实上,CD31免疫荧光染色结果显示没有内皮细胞污染(图3D)。此外,小鼠VIC表达维他汀和α-SMA?…

Discussion

本文为原培养提供了鼠标瓣膜细胞隔离的详细方案。从8周大的小鼠的三个主动脉瓣被集中,以获得足够的细胞数量。此外,本协议描述了VIC表型的特征和体外矿化测定该方法改编自马蒂厄等人先前描述的协议。

在主动脉瓣隔离期间,必须小心避免所有可能的传染源,以保护细胞免受细菌或支原体污染。事实上,在开始实验之前,对所有的手?…

Materials

3 mm cutting edge scissors F.S.T 15000-00
Anti-alpha smooth muscle Actin antibody abcam
Anti-mouse, Alexa Fluor 488 conjugate Cell Signaling 4412
Arsenazo-III reagent set POINT SCIENTIFIC C7529-500 a Kit to measure the concentration of calcium
Bonn Scissors F.S.T 14184-09
Calcium hydroxide SIGMA -Aldrich 31219 31219
CD31 Novusbio
Collagenase type I  (125 units/mg) Thermofisher Scientific 17018029
DMEM Tthermofisher 11965092
Extra fine graefe forceps F.S.T 11150-10
FBS Gibco 16000044
Fine forceps F.S.T Dumont
HCl SIGMA-ALDRICH H1758
HEPES 1 M solution STEMCELLS TECHNOLOGIES
L-Glutamine 100x Thermofisher Scientific 25030081
Mycozap Lanza VZA-2011 Mycoplasma elimination reagent
PBS 10x SIGMA-ALDRICH
penecillin streptomycin 100x Thermofisher Scientific 10378016
Sodium Pyruvate 100 mM Thermofisher Scientific 11360070
Standard pattern forceps  F.S.T 11000-12
Surgical Scissors – Sharp-Blunt F.S.T 14008-14
Trypsin 0.05% Thermofisher Scientific 25300054
Vimentin abcam

References

  1. Rostagno, C. Heart valve disease in elderly. World Journal of Cardiology. 11 (2), 71-83 (2019).
  2. Stewart, B. F., et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. Journal of the American College of Cardiology. 29 (3), 630-634 (1997).
  3. Marquis-Gravel, G., Redfors, B., Leon, M. B., Généreux, P. Medical treatment of aortic stenosis. Circulation. 134 (22), 1766-1784 (2016).
  4. Spitzer, E., et al. Aortic stenosis and heart failure: disease ascertainment and statistical considerations for clinical trials. Cardiac Failure Review. 5 (2), 99-105 (2019).
  5. Hinton, R. B., Yutzey, K. E. Heart valve structure and function in development and disease. Annual Review of Physiology. 73, 29-46 (2011).
  6. Simionescu, D. T., Chen, J., Jaeggli, M., Wang, B., Liao, J. Form follows function: advances in trilayered structure replication for aortic heart valve tissue engineering. Journal of Healthcare Engineering. 3 (2), 179-202 (2012).
  7. Bouchareb, R., et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. European Heart Journal. 40 (17), 1362-1373 (2019).
  8. Rutkovskiy, A., et al. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. Journal of the American Heart Association. 6 (9), (2017).
  9. Bosse, Y., Mathieu, P., Pibarot, P. Genomics: the next step to elucidate the etiology of calcific aortic valve stenosis. Journal of the American College of Cardiology. 51 (14), 1327-1336 (2008).
  10. Drexler, H. G., Uphoff, C. C. Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology. 39 (2), 75-90 (2002).
  11. Richards, J., et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. American Journal of Pathology. 182 (5), 1922-1931 (2013).
  12. Bouchareb, R., et al. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. Journal of Molecular and Cellular Cardiology. 67, 49-59 (2014).
  13. Lerman, D. A., Prasad, S., Alotti, N. Calcific aortic valve disease: molecular mechanisms and therapeutic approaches. European Cardiology. 10 (2), 108-112 (2015).
  14. Janssen, J. W., Helbing, A. R. Arsenazo III: an improvement of the routine calcium determination in serum. European Journal of Clinical Chemistry and Clinical Biochemistry. 29 (3), 197-201 (1991).
  15. Ortlepp, J. R., et al. Lower serum calcium levels are associated with greater calcium hydroxyapatite deposition in native aortic valves of male patients with severe calcific aortic stenosis. Journal of Heart Valve Disease. 15 (4), 502-508 (2006).
check_url/fr/62419?article_type=t

Play Video

Citer Cet Article
Bouchareb, R., Lebeche, D. Isolation of Mouse Interstitial Valve Cells to Study the Calcification of the Aortic Valve In Vitro. J. Vis. Exp. (171), e62419, doi:10.3791/62419 (2021).

View Video