Summary

检测白伊蚊细胞系中的沃尔巴克氏体菌株 wAlbB

Published: June 01, 2022
doi:

Summary

采用4种方法检测细胞内沃尔巴克氏体,相辅相成,提高了抗生素治愈白纹伊蚊来源的Aa23和Aa23-T感染的细菌感染的准确性。

Abstract

作为母体内共生体,沃尔巴克氏体感染了大部分昆虫种群。最近的研究报道了使用沃尔巴克氏体转染的蚊子成功调节RNA病毒传播。控制病毒的关键策略包括通过细胞质不相容性操纵宿主繁殖,以及通过免疫启动和竞争宿主来源资源来抑制病毒转录本。然而,沃尔巴克氏体转染蚊子对病毒感染反应的潜在机制知之甚少。本文提出了一种在白纹伊蚊(Diptera:Culicidae)Aa23细胞的核酸和蛋白质水平上体外鉴定沃尔巴克氏体感染的方案,以增强对沃尔巴克氏体与其昆虫载体之间相互作用的理解。通过结合使用聚合酶链反应(PCR)、定量PCR、免疫印迹和免疫学分析方法,已经描述了一种比使用单一方法更准确的用于检测沃尔巴克氏体感染细胞的标准形态学方案。这种方法也可用于检测其他昆虫分类群中的沃尔巴克氏体感染。

Introduction

亚洲虎蚊 白纹 伊蚊(Skuse)(双翅目:Culicidae)是亚洲和世界其他地区登革热病毒(DENV)的主要载体1,是两种类型的细胞内细菌的天然宿主, 沃尔巴克氏体wAlbA和 wAlbB),分布在整个种系和体细胞组织中23。来自 白纹 松胚胎的Aa23细胞系由至少两种形态细胞类型组成,这两种细胞都支持感染4 ,并且可以使用抗生素(Aa23-T)治愈天然 沃尔巴克氏体 感染。鉴于Aa23仅保留 wAlbB,它是研究宿主 – 内共生体相互作用456的有用模型。

沃尔巴克氏体是母体传播的,估计感染了65%的昆虫物种89和28%的蚊子物种10。它感染多种组织并与宿主形成亲密的共生关系,通常通过操纵宿主生殖系统12,13诱导细胞质不相容(CI)11和种群替代。模拟果蝇14的自然种群和在实验室笼子和田间试验15埃及伊蚊中观察到这些宿主反应。沃尔巴克氏体引发的一个重要的非生殖性操作是诱导宿主对各种病原体的抗性,包括DENV,基孔肯雅病毒(CHIKV)和西尼罗河病毒(WNV)1617,这些病原体可能由共生体的先天免疫系统改善1819介导,沃尔巴克氏体和病毒之间对基本宿主资源的竞争20,以及操纵宿主病毒防御途径21.

该方案是为研究 沃尔巴克氏体诱导的宿主抗病毒反应的这些潜在机制而开发的。它使用四种方法检测Aa23细胞的细胞内 沃尔巴克氏体 感染。这些方法为研究其他宿主物种的细胞内 沃尔巴克氏体 感染提供了强有力的理论基础。第一种方法,PCR – 一种强大的技术,允许在不使用常规克隆程序的情况下酶扩增DNA的特定区域 – 用于检测 沃尔巴克氏体 DNA并确定 是否存在沃尔巴克氏体 感染22。第二种方法是使用定量PCR(qPCR)测量 沃尔巴克氏体 DNA拷贝密度,以可靠地检测和测量每个PCR循环中产生的产物,该产物与PCR23之前的模板量成正比。第三种方法使用蛋白质印迹检测细胞内 沃尔巴克氏体 蛋白的存在 – 这是通过结合电泳的高分离能力,抗体的特异性和显色酶促反应的敏感性来检测复杂混合物中特定蛋白质的最强大工具之一。最后一种方法是免疫荧光测定(IFA),结合免疫学,生物化学和显微镜,通过抗原抗体反应检测 沃尔巴克氏体 表面蛋白(wsp),以确认 沃尔巴克氏体的 细胞摄取并确定其细胞定位。

本文介绍了上述四种验证细胞中 沃尔巴克氏体 存在的方法,可用于检测外源性 沃尔巴克氏体 是否成功转染,细胞内的 沃尔巴克氏体 是否被清除。在确定细胞中是否存在 沃尔巴克氏体 后,可以进行各种不同的分析,包括基因组学,蛋白质组学或代谢组学。该协议演示了通过Aa23细胞检测 沃尔巴克氏体 ,但也可用于其他细胞。

Protocol

1. 材料和试剂 使用无热原溶液和培养基进行细胞培养(参见 材料表)。 使用超纯水制备所有溶液。 在选择用于细胞培养的胎牛血清(FBS)时要小心,遵循批次检查过程。注意:由于FBS批次可能会定期更改,因此无法在该协议中说明相关目录和批号。 选择来自 白纹 松卵的Aa23细胞株,对应于无 沃尔巴克氏体Aa23-T。 <p…

Representative Results

在检测到沃尔巴克氏体之前,在光学显微镜下观察Aa23和Aa23-T细胞,以确定两种细胞系之间的任何形态差异。Aa23和Aa23-T细胞至少具有两种细胞形态,但两种细胞类型之间没有明显的形态差异(图1)。在这里,Aa23细胞被用作使用四种方法检测沃尔巴克氏体感染的模型系统。使用诊断引物81F/691R对Wolbachiawsp基因进行阳性扩增在Aa23细胞(泳?…

Discussion

细胞内 沃尔巴克氏体 感染的检测对于研究 沃尔巴克氏体-宿主相互作用和确认新菌株细胞的成功转染至关重要。在该方案中,使用了四种方法在核酸和蛋白质水平上成功检测细胞内 沃尔巴克氏体 感染。这四种实验方法证实并提高了 沃尔巴克氏体 感染细胞的检测精度。

PCR用于在核酸水平上检测细胞 的沃尔巴克氏体 感染的存在。然而,由于…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢明尼苏达大学的王新茹博士提供有见地的建议和指导。本研究由国家自然科学基金(No.81760374)资助。

Materials

Microscope Zeiss SteREO Discovery V8
Petri dish Fisher Scietific FB0875713
Pipette Pipetman F167380 P10
inSituX platform
Analysis software In-house developed
Cerium doped yttrium aluminum garnet MSE Supplies Ce:Y3Al5O12, YAG single crystal substrates
Chip holder In-house developed
Control software In-house developed
Immersion oil Cargille Laboratories 16482 Type A low viscosity 150 cSt
inSituX platform In-house developed
IR light source  Thorlabs Incorporated LED1085L LED with a Glass Lens, 1085 nm, 5 mW, TO-18
Outer ring  In-house developed
Pump lasers  Thorlabs Incorporated LD785-SE400 785 nm, 400 mW, Ø9 mm, E Pin Code, Laser Diode
Raspberry Pi Raspberry Pi Fundation
Retaining ring Thorlabs Incorporated SM1RR SM1 retaining ring for Ø1" lens tubes and mounts
Seedless quartz crystal University Wafers, Inc. U01-W2-L-190514 25.4 mm diameter Z-cut 0.05 mm thickness double side polish 8 mm on -X
Shim In-house developed
X-ray beam stop In-house developed

References

  1. Wiwatanaratanabutr, I., Kittayapong, P. I. Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. Journal of Invertebrate Patholology. 102 (3), 220-224 (2009).
  2. Sinkins, S. P., Braig, H. R., O’Neill, S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proceedings of Biologial Sciences. 261 (1362), 325-330 (1995).
  3. Dobson, S. L., et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology. 29 (2), 153-160 (1999).
  4. O’Neill, S. L., et al. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Molecular Biology. 6 (1), 33-39 (1997).
  5. Sinha, A., Li, Z., Sun, L., Carlow, C. K. S. Complete genome sequence of the Wolbachia wAlbB endosymbiont of Aedes albopictus. Genome Biology and Evoution. 11 (3), 706-720 (2019).
  6. Sinkins, S. P. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochemistry and Molecular Biology. 34 (7), 723-729 (2004).
  7. Fallon, A. M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In Vitro Cellular Developmental Biology – Animals. 44 (5-6), 154-161 (2008).
  8. Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., Werren, J. H. How many species are infected with Wolbachia?-A statistical analysis of current data. Microbiology Letters. 281 (2), 215-220 (2008).
  9. Werren, J. H., Baldo, L., Clark, M. E. Wolbachia: master manipulators of invertebrate biology. National Review of Microbiology. 6 (10), 741-751 (2008).
  10. Kittayapong, P., Baisley, K. J., Baimai, V., O’Neill, S. L. Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology. 37 (3), 340-345 (2000).
  11. O’Neill, S. L., Hoffmann, A., Werren, J. . Influential passengers: inherited microorganisms and arthropod reproduction. , (1997).
  12. McGraw, E. A., O’Neill, S. L. Beyond insecticides: new thinking on an ancient problem. National Review of Microbiology. 11 (3), 181-193 (2013).
  13. Bourtzis, K., et al. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Tropica. 132, 150-163 (2014).
  14. Turelli, M., Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature. 353 (6343), 440-442 (1991).
  15. Hoffmann, A. A., et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 476 (7361), 454-457 (2011).
  16. Walker, T., et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476 (7361), 450-453 (2011).
  17. Hughes, G. L., Koga, R., Xue, P., Fukatsu, T., Rasgon, J. L. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathogens. 7 (5), 1002043 (2011).
  18. Bian, G., Xu, Y., Lu, P., Xie, Y., Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathogens. 6 (4), 1000833 (2010).
  19. Moreira, L. A., et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 139 (7), 1268-1278 (2009).
  20. Caragata, E. P., et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathogens. 9 (6), 1003459 (2013).
  21. Zhang, G., Hussain, M., O’Neill, S. L., Asgari, S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 110 (25), 10276-10281 (2013).
  22. Tortosa, P., Courtiol, A., Moutailler, S., Failloux, A. B., Weill, M. Chikungunya-Wolbachia interplay in Aedes albopictus. Insect Molecular Biology. 16 (7), 677-684 (2008).
  23. Lu, P., Bian, G., Pan, X., Xi, Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Neglected Tropical Diseases. 6 (7), 1754 (2012).
  24. Ghosh, A., Jasperson, D., Cohnstaedt, L. W., Brelsfoard, C. L. Transfection of Culicoides sonorensis biting midge cell lines with Wolbachia pipientis. Parasite Vectors. 12 (1), 483 (2019).
  25. Zhou, W., Rousset, F., O’Neill, S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. The Royal Society Publishing. Proceedings B. 265 (1395), 509-515 (1998).
  26. Park, M. S., Takeda, M. Cloning of PaAtg8 and roles of autophagy in adaptation to starvation with respect to the fat body and midgut of the Americana cockroach, Periplaneta americana. Cell Tissue Research. 356 (2), 405-416 (2014).
  27. Geng, S. C., Li, X. L., Fang, W. H. Porcine circovirus 3 capsid protein induces autophagy in HEK293T cells by inhibiting phosphorylation of the mammalian target of rapamycin. Journal of Zhejiang University Science B. 21 (7), 560-570 (2020).
  28. Taylor, S. C., Laperriere, G., Germain, H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Scientific Reports. 7 (1), 2409 (2017).
  29. Kosea, H., Karr, T. L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mechanisms of Development. 51 (2-3), 275-288 (1995).
  30. Ye, Y. H., et al. Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti. PLoS Neglected Tropical Diseases. 9 (6), (2015).
  31. Jensenius, M., et al. Comparison of immunofluorescence, Western blotting, and cross-adsorption assays for diagnosis of African tick bite fever. Clinical and Diagnostic Laboratory Immunology. 11 (4), 786-788 (2004).
check_url/fr/63662?article_type=t

Play Video

Citer Cet Article
Chen, L., Xiao, Q., Shi, M., Cheng, J., Wu, J. Detecting Wolbachia Strain wAlbB in Aedes albopictus Cell Lines. J. Vis. Exp. (184), e63662, doi:10.3791/63662 (2022).

View Video