Summary

細胞および組織におけるグルコース取り込みの間接的尺度としての細胞外グルコース枯渇 Ex vivo

Published: April 06, 2022
doi:

Summary

蛍光標識されたグルコースの細胞外枯渇は、グルコース取り込みと相関し、摘出した臓器および細胞培養物におけるグルコース取り込みのハイスループットスクリーニングに使用することができる。

Abstract

糖尿病の世界的な流行が続いているため、グルコースの取り込みに影響を与える環境的、栄養的、内分泌的、遺伝的、およびエピジェネティックな要因の同定に対する需要が高まっています。細胞内蛍光の測定は、インビトロで細胞内の蛍光標識グルコース(FD-グルコース)の取り込みをテストするため、または インビボでグルコースを消費する組織をイメージングするために広く使用されている 方法です。このアッセイは、選択された時点におけるグルコース取り込みを評価する。細胞内分析は、FD-グルコースの代謝が内因性グルコースの代謝よりも遅いと仮定し、これは異化および同化反応およびシグナル伝達に関与する。しかし、動的グルコース代謝はまた、取り込み機構を変化させ、これは異なる因子に応答してグルコース取り込みの速度論的測定を必要とするであろう。本稿では、細胞外FD-グルコース枯渇を測定する方法について説明し、 エキソビボの細胞および組織における細胞内FD-グルコース取り込みとの相関を検証します。細胞外グルコース枯渇は、ハイスループットの動態学的および用量依存的研究、ならびに血糖活性およびそれらの組織特異的効果を有する化合物の同定に潜在的に適用され得る。

Introduction

グルコース取り込みを測定するための需要は、グルコース代謝に依存する多数の疾患の流行の増加に対処するための重要な必要性とともに上昇する。変性代謝疾患の根底にあるメカニズムは、神経学的および認知障害1、炎症性2および感染症3、癌45、ならびに加齢6について、エネルギーおよびその貯蔵、同化プロセス、タンパク質、および遺伝子修飾、シグナル伝達、遺伝子の調節ならびに核酸合成および複製のためのグルコース代謝に依存する7,8,9.真性糖尿病(DM)は、グルコース取り込み調節の機能不全に直接関係している。DMは、1型、-2型、および-3型真性糖尿病、妊娠糖尿病、若年者の成熟発症糖尿病、および環境的および/または遺伝的要因によって誘発される他のタイプのこの疾患などの慢性疾患のスペクトルである。2016年、糖尿病に関する最初のWHOグローバルレポートは、最も広範なDMとともに生きる成人の数が1980年以来ほぼ4倍に増加し、成人10人の4億2,200万人に増加し、このDM患者の数は過去数十年間指数関数的に増加していることを実証しました。2019年だけでも、推定150万人の死亡がDM10によって直接引き起こされました。この劇的な上昇は、タイプ2 DMの増加と、太りすぎや肥満を含むそれを駆動する状態によるものです10。COVID-19のパンデミックは、一般集団と比較してDM患者の死亡率が2倍に増加することを明らかにし、免疫防御におけるグルコース代謝の深遠でありながらあまり理解されていない役割を示唆しています3。DM、肥満、およびその他の疾患の予防、早期診断、および治療には、異なる組織によるグルコース取り込みの測定の最適化、およびグルコース取り込みに影響を及ぼす環境11、栄養12、内分泌13、遺伝的14、およびエピジェネティック15因子の同定が必要である。

研究において、グルコースの細胞内および/または組織内取り込みは、一般に、インビトロ161718およびインビボ19蛍光標識されたグルコース(FD-グルコース)によって測定される。FD-グルコースは、放射性標識グルコース20、分析質量分析21、メタボロミクス22、核磁気共鳴法23、陽電子放射断層撮影/コンピュータ断層撮影法(PET/CT)5,24を用いたより正確な方法と比較して好ましい方法となった。FD-グルコース取り込みとは異なり、より多くの生物学的材料を必要とする分析方法は、多段階のサンプル調製、高価な機器、および複雑なデータ分析を含む可能性がある。細胞培養におけるFD-グルコース取り込みの効果的かつ安価な測定は、概念実証実験で利用されており、他の方法による検証が必要な場合がある。

グルコース取り込み研究のためのFD-グルコース適用の基礎は、内因性グルコースと比較してFD-グルコースの代謝の低下である25。それにもかかわらず、内因性グルコースおよびFDグルコースの両方が、同化、異化、およびシグナル伝達プロセスで使用するために、すべての細胞コンパートメント間で動的に分布する。FD-グルコースの区画化および時間依存性処理25 は、蛍光測定を妨害し、ハイスループットスクリーニング実験、速度論的分析、3D細胞培養、共培養、および組織外植実験におけるこのアッセイの使用のための主要な制限因子を表す。ここでは、FD-グルコースの細胞外枯渇とその細胞内取り込みとの間に高い相関関係を示すデータを提供し、細胞内グルコース取り込みの代理測定としてのFD-グルコースの細胞外枯渇を示唆する。グルコースの細胞外枯渇の測定を、インスリンおよび実験薬物18 で処置したマウスにおけるグルコース取り込みの組織特異的差異を検証するために適用し、この方法の原理証明を提供する。

現在のプロトコールは、3T3-L1細胞におけるFDグルコース取り込みの細胞内および細胞外(1)測定値を記載している。プロトコルセクション1〜7は、48時間の細胞の培養および増殖を説明する。細胞飢餓、刺激、およびベースライン細胞外測定;細胞外FD-グルコースの刺激後測定およびFD-グルコースおよびタンパク質の細胞内測定。プロトコールセクション8は、他の箇所に記載されるインスリンおよびアミノ酸化合物2(AAC2)の存在下および非存在下でob/obマウスから解剖された組織におけるFDグルコースの細胞外取り込みのエクスビボ測定を記載している18

Protocol

動物実験は、オハイオ州立大学の施設動物ケアおよび使用委員会(OSU、プロトコル2007A0262-R4)によって承認された。 メモ:すべての手順は、送風機がオンでライトが消灯したクラスIIバイオセーフティキャビネットで行う必要があります。 1. 資料作成 メモ: すべての材料は、 材料の表にリストされています。…

Representative Results

細胞内摂取および細胞外グルコース枯渇は、インスリン刺激の有無にかかわらず、異なる濃度のFDグルコース(図2)に応答して、3T3−L1前駆脂肪細胞において測定された。 図2Aは 、FD−グルコースの細胞内取り込みの用量依存的増加を示し、これはインスリンの存在下で有意に増加した。同じ細胞における細胞外FD-グルコースの付随する減少を <strong …

Discussion

細胞外FD-グルコース枯渇と細胞培養における正規化された細胞内グルコース取り込みとの直接比較は高い相関関係を示し、細胞外グルコース枯渇がグルコース取り込み評価のための代理測定である可能性があることを示唆した。細胞外FD-グルコースの測定には、広範囲のFDグルコース濃度を使用することができ、また、0.5-2.5μgのFD-グルコース/mLが最適な範囲を提供するようである。細胞外FD-?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

このプロジェクトは、Ralph and Marian Falk Medical Research Catalyst AwardとKathleen Kelly Awardの支援を受けました。その他の支援には、国立研究資源センターUL1RR025755およびNIH医学研究ロードマップであるNCI P30CA16058(OSUCCC)が含まれていました。コンテンツは著者の責任であり、国立研究資源センターまたはNIHの公式見解を表すものではありません。

Materials

3T3-L1 mouse fibroblasts ATCC CL-173 Cell line
96-well plates Falcon 353227 Plastic ware
B6.V-Lepob/J male mice Jackson Laboratory stock number 000632 Mice
BioTek Synergy H1 modular multimode microplate reader (Fisher Scientific, US) Fisher Scientific, US  B-SHT Device
Bovine serum Gibco/ThermoFisher 161790-060 Cell culture
Calf serum Gibco/ThermoFisher 26010-066 Cell culture
Cell incubator Forma Series II Water Jacket Device
Diet (mouse/rat diet, irradiated) Envigo Teklad LM-485 Diet
Dimethylsulfoxide (DMSO) Sigma LifeScience D2650-100mL Reagent
Dulbecco's Modified Eagle Medium Gibco/ThermoFisher  11965-092 Cell culture
Ethanol Sigma Aldrich E7023-500mL Reagent
Fluorescent 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose) Sigma 72987-1MG Assay
Glucose-free and phenol red-free DMEM Gibco/ThermoFisher A14430-01 Cell culture
Human insulin 10 mg/mL MilliporeSigma, Cat N 91077C Cat N 91077C Reagent
Isoflurane, 5% Henry Schein NDC 11695-6776-2 Anestaetic
Penicillin/streptomycin (P/S) Gibco/ThermoFisher 15140-122 Cell culture
Phosphate buffered solution Sigma-Aldrich DA537-500 mL Cell culture
Pierce bicinchoninic acid (BCA) protein assay ThermoFisher Cat N23225 Assay
Radioimmunoprecipitation assay lysis buffer Santa Cruz Biotechnology sc-24948 Assay
Trypsin-EDTA (0.05%) Gibco/ThermoFisher  25300-054 Cell culture

References

  1. Kyrtata, N., Emsley, H. C. A., Sparasci, O., Parkes, L. M., Dickie, B. R. A systematic review of glucose transport alterations in Alzheimer’s disease. Frontiers in Neuroscience. 15, 568 (2021).
  2. Garcia-Carbonell, R., et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatology. 68 (7), 1614-1626 (2016).
  3. Kumar, A., et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Review. 14 (4), 535-545 (2020).
  4. Lee, J. H., et al. Different prognostic impact of glucose uptake in visceral adipose tissue according to sex in patients with colorectal cancer. Scientific Reports. 11 (1), 21556 (2021).
  5. Miner, M. W. G., et al. Comparison of: (2S,4R)-4-[(18)F]Fluoroglutamine, [(11)C]Methionine, and 2-Deoxy-2-[(18)F]Fluoro-D-Glucose and two small-animal PET/CT systems imaging rat gliomas. Frontiers in Oncology. 11 (18), 730358 (2021).
  6. Gumbiner, B., Thorburn, A. W., Ditzler, T. M., Bulacan, F., Henry, R. R. Role of impaired intracellular glucose metabolism in the insulin resistance of aging. Metabolism. 41 (10), 1115-1121 (1992).
  7. Ebrahimi, A. G., et al. Beta cell identity changes with mild hyperglycemia: Implications for function, growth, and vulnerability. Molecular Metabolism. 35, 100959 (2020).
  8. Ruberto, A. A., et al. KLF10 integrates circadian timing and sugar signaling to coordinate hepatic metabolism. Elife. 10, 65574 (2021).
  9. Stocks, B., Zierath, J. R. Post-translational modifications: The signals at the intersection of exercise, glucose uptake, and insulin sensitivity. Endocrinology Reviews. , (2021).
  10. World Health Organization. Global report on diabetes. World Health Organization. , (2016).
  11. Kolb, H., Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine. 15 (1), 131 (2017).
  12. Galicia-Garcia, U., et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Science. 21 (17), 6275 (2020).
  13. Petrov, M. S., Basina, M. DIAGNOSIS OF ENDOCRINE DISEASE: Diagnosing and classifying diabetes in diseases of the exocrine pancreas. European Journal of Endocrinology. 184 (4), 151-163 (2021).
  14. Sirdah, M. M., Reading, N. S. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clinical Genetics. 98 (6), 525-547 (2020).
  15. Ramos-Lopez, O., Milagro, F. I., Riezu-Boj, J. I., Martinez, J. A. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflammation Research. 70 (1), 29-49 (2021).
  16. Yamamoto, N., et al. Measurement of glucose uptake in cultured cells. Current Protocols in Pharmacology. 71 (1), 12-14 (2015).
  17. Yang, L., et al. A sensitive and simple HPLC-FLD-based method for the measurement of intracellular glucose uptake. Food Chemistry. 372, 131218 (2021).
  18. Lee, A., et al. Amino acid-based compound activates atypical PKC and leptin receptor pathways to improve glycemia and anxiety like behavior in diabetic mice. Biomaterials. 239, 119839 (2020).
  19. Shukla, S. K., Mulder, S. E., Singh, P. K. Hypoxia-mediated in vivo tumor glucose uptake measurement and analysis. Methods in Molecular Biology. 1742, 107-113 (2018).
  20. Jakson, I., Ujvari, D., Brusell Gidlof, S., Linden Hirschberg, A. Insulin regulation of solute carrier family 2 member 1 (glucose transporter 1) expression and glucose uptake in decidualizing human endometrial stromal cells: an in vitro study. Reproductive Biology and Endocrinology. 18 (1), 117 (2020).
  21. Saparbaev, E., et al. Identification and quantification of any isoforms of carbohydrates by 2D UV-MS fingerprinting of cold ions. Analytical Chemistry. 92 (21), 14624-14632 (2020).
  22. Schulz, A., et al. Targeted metabolomics of pellicle and saliva in children with different caries activity. Scientific Reports. 10 (1), 697 (2020).
  23. Shulman, R. G. Nuclear magnetic resonance studies of glucose metabolism in non-insulin-dependent diabetes mellitus subjects. Molecular Medicine. 2 (5), 533-540 (1996).
  24. Cochran, B. J., et al. In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia. 59 (18), 1977-1984 (2016).
  25. Lloyd, P. G., Hardin, C. D., Sturek, M. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiological Research. 48 (6), 401-410 (1999).
  26. Beeton, C., Garcia, A., Chandy, K. G. Drawing blood from rats through the saphenous vein and by cardiac puncture. Journal of Visualized Experiments. (7), e266 (2007).
  27. DiSilvestro, D. J., et al. Leptin production by encapsulated adipocytes increases brown fat, decreases resistin, and improves glucose intolerance in obese mice. PLoS One. 11 (4), 0153198 (2016).
  28. Friedman, J. M. Leptin and the endocrine control of energy balance. Nature Metabolism. 1 (8), 754-764 (2019).
  29. Guillam, M. T., Burcelin, R., Thorens, B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proceedings of the National Academy of Sciences. 95 (21), 12317-12321 (1998).
  30. Guillam, M. T., et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nature Genetics. 17 (3), 327-330 (1997).
  31. Barros, L. F., et al. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. Journal of Neurochemistry. 109, 94-100 (2009).
  32. Sprinz, C., et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: A systematic review. PLoS One. 13 (2), 0193140 (2018).
  33. Johnson, T. V., Martin, K. R. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Investigative Ophthalmology & Visual Science. 49 (8), 3503-3512 (2008).
  34. de Urquiza, A. M., et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 290 (5499), 2140-2144 (2000).
  35. Olson, A. L., Pessin, J. E. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annual Review of Nutrition. 16 (1), 235-256 (1996).
  36. Muhanna, D., Arnipalli, S. R., Kumar, S. B., Ziouzenkova, O. Osmotic adaptation by Na(+)-dependent transporters and ACE2: correlation with hemostatic crisis in COVID-19. Biomedicines. 8 (11), 460 (2020).
  37. Ligasova, A., Koberna, K. DNA dyes-highly sensitive reporters of cell quantification: comparison with other cell quantification methods. Molecules. 26 (18), 5515 (2021).
  38. DeFronzo, R. A., Tobin, J. D., Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology. 237 (3), 214-223 (1979).
check_url/fr/63681?article_type=t

Play Video

Citer Cet Article
Kumar, S. B., Arnipalli, S., Abushukur, A., Carrau, S., Mehta, P., Ziouzenkova, O. Extracellular Glucose Depletion as an Indirect Measure of Glucose Uptake in Cells and Tissues Ex Vivo. J. Vis. Exp. (182), e63681, doi:10.3791/63681 (2022).

View Video