Summary

用解剖学特异性单细胞基因表达方法研究成瘾行为中抗奖励的驱动因素

Published: August 04, 2022
doi:

Summary

激光捕获显微切割和微流体RT-qPCR的组合为测量单个神经元和神经胶质细胞中的转录组提供了解剖学和生物技术特异性。将创造性方法与系统生物学方法应用于精神疾病可能会导致理解和治疗的突破,例如成瘾中的神经炎症抗奖励假说。

Abstract

成瘾行为率的增加促使心理健康研究人员和临床医生都了解反奖励和康复。这种从奖励和开始的转变需要新的视角,范式和假设,以及用于调查成瘾的方法的扩展。在这里,我们提供了一个示例:一种系统生物学方法来研究抗奖励,该方法结合了激光捕获显微切割(LCM)和高通量微流体逆转录定量聚合酶链反应(RT-qPCR)。测量了基因表达网络动力学,并确定了酒精和阿片类药物戒断中神经内脏失调的关键驱动因素,即神经炎症。这种技术组合以单细胞分辨率提供解剖学和表型特异性,具有高通量灵敏度和特异性基因表达测量,产生假设生成数据集和机制可能性,为新的见解和治疗创造机会。

Introduction

成瘾在发达国家仍然是一个日益严峻的挑战12。尽管科学和临床取得了重大进展,但成瘾率继续增加,而既定治疗方法的疗效最多保持稳定345。然而,生物技术和科学方法的进步导致了进一步研究物质依赖病理生理学的新方法和假设678事实上,最近的发展表明,新的概念和治疗范式可能会导致具有社会,经济和政治后果的突破9101112

我们调查了酒精戒断和阿片类药物依赖中的抗奖励1314,1516方法是这种范式的核心1718。激光捕获显微切割(LCM)可以选择具有高解剖特异性的单个细胞。此功能是神经炎症抗奖励假说不可或缺的一部分,因为神经胶质细胞和神经元都可以从同一动物的同一神经元亚核中收集和分析131415,1619然后可以使用高通量微流体逆转录定量聚合酶链反应(RT-qPCR)测量所选细胞转录组的相关部分,为计算分析提供高维数据集,从而深入了解功能网络2021

测量特定脑核中神经元和神经胶质细胞中的转录组子集会生成一个数据集,该数据集在样本数量和测量的基因方面都是稳健的,并且具有敏感性和特异性。这些工具是系统治疗精神疾病的神经科学方法的最佳选择,因为神经胶质细胞,主要是星形胶质细胞和小胶质细胞,在过去十年中已在神经和精神疾病中发挥核心作用2223。我们的方法可以测量神经胶质细胞和神经元在参与局部旁分泌信号传导的众多受体和配体上的表达反应。实际上,可以使用各种定量方法(例如模糊逻辑24)从这些数据集中推断信号。此外,识别神经元或神经胶质细胞中的细胞亚表型及其功能可以深入了解特定细胞核中的脑细胞如何在单细胞水平上组织、响应和失调。该功能系统的动力学也可以通过时间序列实验16进行建模。最后,动物模型可以在解剖学或药理学上受到干扰,为该系统的方法提供机械条件。

代表性实验:
下面,我们提供了这些方法的应用示例。本研究调查了大鼠神经元和小胶质细胞基因在孤立核(NTS)中对酒精依赖和随后的戒断的反应16。大鼠队列包括1)对照,2)乙醇依赖性(EtOH),3)8小时戒断(Wd),4)32小时Wd和5)176小时Wd(图1A)。快速斩首后,将脑干与前脑分离并冷冻切片,并对酪氨酸羟化酶阳性(TH +)神经元和小胶质细胞切片进行染色(图1B)。LCM用于收集TH+和TH-神经元以及小胶质细胞。所有细胞均来自NTS,并作为10个细胞池的样本进行分析。在测量65个基因的RT-qPCR平台上运行四个96 x 96微流体RT-qPCR动态阵列(图1B-C)。使用-ΔΔCt方法对数据进行归一化并使用R进行分析,并使用分子标记验证单细胞选择(图1D-E)。通过单批次和跨批次分析的技术重复进一步验证了技术验证(图2图3)。TH+和TH-神经元组织成不同的亚表型,具有相似的炎症基因簇,但γ-氨基丁酸(GABA)受体(R)簇不同(图4图5)。炎症基因簇表达升高的亚表型在32小时Wd时过度代表,而GABA受体(GABAR)表达在长期酒精戒断(176小时Wd)中保持低。这项工作有助于酒精和阿片类药物依赖的反奖励假说,该假说推测戒断时来自内脏的拦截反馈有助于内脏 – 情绪神经元核(即NTS和杏仁核)的失调,导致更严重的自主神经和情绪后遗症,从而导致物质依赖(图6)。

Protocol

这项研究是根据托马斯杰斐逊大学动物护理和使用委员会(IACUC)的建议进行的。该协议由托马斯杰斐逊大学IACUC批准。 1. 动物模型 家雄性Sprague Dawley(>120克,Harlan,印第安纳波利斯,印第安纳波利斯,美国)大鼠三胞胎单独使用乙醇食物(2只大鼠)或对照食物混合物(1只大鼠)。注意:该代表性实验采用利伯-德卡利协议来研究酒精戒断的神经生物?…

Representative Results

在LCM程序期间,单细胞收集的验证是目视进行的。在QC站评估细胞核。细胞类型可以通过该细胞类型的标记荧光团的发射及其一般形态来确定。如果在盖子上选择了不需要的细胞,则可以在QC站用紫外激光破坏它们的遗传物质。还需要通过分子分析进行进一步验证。在这个代表性的例子16中,除了小胶质细胞之外,还选择了两种类型的神经元——酪氨酸羟化酶(Th)阳性(+)和Th?…

Discussion

酒精使用障碍仍然是一种具有挑战性的疾病。我们的团队通过从系统神经科学的角度研究反奖励过程来研究这种疾病。我们测量了酒精戒断时间序列16中单个NTS神经元和小胶质细胞的基因表达变化。选择NTS是因为其在酒精戒断综合征中发生的自主神经失调中的突出作用。我们将LCM与单细胞微流体RT-qPCR相结合,允许以低成本测量稳定数量的样品和基因,具有解剖学和分子敏感性和?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这里介绍的工作由NIH HLB U01 HL133360授予JS和RV,NIDA R21 DA036372授予JS和EVB,T32 AA-007463授予Jan Hoek以支持SJO’S,以及国家酒精中毒和酒精滥用研究所:R01 AA018873资助。

Materials

20X DNA Binding Dye Fluidigm 100-7609 NA
2x GE Assay Loading Reagent Fluidigm 85000802-R NA
96.96 Dynamic Array IFC for Gene Expression (referred to as qPCR chip in text) Fluidigm BMK-M-96.96 NA
Anti-Cd11β Antibody Genway Biotech CCEC48 Microglia Stain
Anti-NeuN Antibody, clone A60 EMD Millipore MAB377 Neuronal Stain
Anti-tyrosine hydroxylase antibody abcam ab112 Stain for TH+ neurons
ArcturusXT Laser Capture Microdissection System Arcturus NA NA
Biomark HD Fluidigm NA RT-qPCR platform
Bovine Serum Antigen Sigma-Aldrich B4287
CapSure Macro LCM Caps ThermoFisher Scientific  LCM0211 NA
CellDirect One-Step qRT-PCR Kit ThermoFisher Scientific 11753500 Lysis buffer solution components
CellsDirect Resuspension & Lysis Buffer Kit ThermoFisher Scientific 11739010 Invitrogen
DAPI ThermoFisher Scientific 62248 Nucleus Stain
DNA Suspension Buffer TEKnova T0221
Donkey anti-Rabbit IgG (H+L) ReadyProbe Secondary Antibody, Donkey anti-Rabbit IgG (H+L) ReadyProbe Secondary Antibody, Alexa Fluor 488 ThermoFisher Scientific R37118 Seconadry Antibody
Exonuclease I New Englnad BioLabs, Inc. M0293S NA
ExtracSure Sample Extraction Device ThermoFisher Scientific LCM0208 NA
FisherbrandTM Superfrost Plus Microscope Slides ThermoFisher Scientific 22-037-246 Plain glass slides
GeneAmp Thin-Walled Reaction Tube ThermoFisher Scientific N8010611
Goat anti-Mouse IgG (H+L), Superclona Recombinant Secondary Antibody, Alexa Fluor 555 ThermoFisher Scientific A28180 Seconadry Antibody
IFC Controller Fluidigm NA NA
RNaseOut ThermoFisher Scientific 10777019
SsoFast EvaGreen Supermix with Low Rox Bio-Rad PN 172-5211 NA
SuperScript VILO cDNA Synthesis Kit ThermoFisher Scientific 11754250 Contains VILO and SuperScript
T4 Gene 32 Protein New Englnad BioLabs, Inc. M0300S NA
TaqMan PreAmp Master Mix ThermoFisher Scientific 4391128 NA
TE Buffer TEKnova T0225 NA
TempPlate Semi-Skirted 96-Well PCR Plate, 0.2 mL USA Scientific 1402-9700 NA

References

  1. . Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health Available from: https://www.samhsa.gov/data/ (2020)
  2. Prevalence of Serious Mental Illness (SMI). NIH Available from: https://www.nimh.nih.gov/health/statistics/mental-illness.shtml (2020)
  3. Mattick, R. P., Kimber, J., Breen, C., Davoli, M., Mattick, R. P. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database of Systematic Reviews. , (2008).
  4. Mattick, R. P., Breen, C., Kimber, J., Davoli, M. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. The Cochrane Database of Systematic Reviews. 2009 (3), (2009).
  5. Miller, P. M., Book, S. W., Stewart, S. H. Medical treatment of alcohol dependence: A systematic review. International Journal of Psychiatry in Medicine. 42 (3), 227-266 (2012).
  6. Holmes, E. A., et al. The Lancet Psychiatry Commission on psychological treatments research in tomorrow’s science. The Lancet. Psychiatry. 5 (3), 237-286 (2018).
  7. Ford, C. L., Young, L. J. Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Current Opinion in Neurobiology. 68, 1-8 (2021).
  8. Holmes, E. A., Craske, M. G., Graybiel, A. M. Psychological treatments: A call for mental-health science. Nature. 511 (7509), 287-289 (2014).
  9. Miranda, A., Taca, A. Neuromodulation with percutaneous electrical nerve field stimulation is associated with reduction in signs and symptoms of opioid withdrawal: a multisite, retrospective assessment. The American Journal of Drug and Alcohol Abuse. 44 (1), 56-63 (2018).
  10. Metz, V. E., et al. Effects of ibudilast on the subjective, reinforcing, and analgesic effects of oxycodone in recently detoxified adults with opioid dependence. Neuropsychopharmacology. 42 (9), 1825-1832 (2017).
  11. Heinzerling, K. G., et al. placebo-controlled trial of targeting neuroinflammation with ibudilast to treat methamphetamine use disorder. Journal of Neuroimmune Pharmacology. 15 (2), 238-248 (2020).
  12. Bogenschutz, M. P., et al. Psilocybin-assisted treatment for alcohol dependence: A proof-of-concept study. Journal of Psychopharmacology. 29 (3), 289-299 (2015).
  13. O’Sullivan, S. J., Schwaber, J. S. Similarities in alcohol and opioid withdrawal syndromes suggest common negative reinforcement mechanisms involving the interoceptive antireward pathway. Neuroscience and Biobehavioral Reviews. 125, 355-364 (2021).
  14. O’Sullivan, S. J. Single-cell systems neuroscience: A growing frontier in mental illness. Biocell. 46 (1), 7-11 (2022).
  15. O’Sullivan, S. J., et al. Single-cell glia and neuron gene expression in the central amygdala in opioid withdrawal suggests inflammation with correlated gut dysbiosis. Frontiers in Neuroscience. 13, 665 (2019).
  16. O’Sullivan, S. J., McIntosh-Clarke, D., Park, J., Vadigepalli, R., Schwaber, J. S. Single cell scale neuronal and glial gene expression and putative cell phenotypes and networks in the nucleus tractus solitarius in an alcohol withdrawal time series. Frontiers in Systems Neuroscience. 15, 739790 (2021).
  17. O’Sullivan, S. J., Reyes, B. A. S., Vadigepalli, R., Van Bockstaele, E. J., Schwaber, J. S. Combining laser capture microdissection and microfluidic qpcr to analyze transcriptional profiles of single cells: A systems biology approach to opioid dependence. Journal of Visualized Experiments. (157), e60612 (2020).
  18. Achanta, S., Vadigepalli, R. Single cell high-throughput qRT-PCR protocol. Protocols.io. , (2020).
  19. O’Sullivan, S. J. The interoceptive antireward pathway and gut dysbiosis in addiction. Journal of Psychiatry, Depression & Anxiety. 7 (40), 1-5 (2021).
  20. Park, J., et al. Single-cell transcriptional analysis reveals novel neuronal phenotypes and interaction networks involved in the central circadian clock. Frontiers in Neuroscience. 10, 481 (2016).
  21. Staehle, M. M., et al. Diurnal patterns of gene expression in the dorsal vagal complex and the central nucleus of the amygdala – Non-rhythm-generating brain regions. Frontiers in Neuroscience. 14, 375 (2020).
  22. Réus, G. Z., et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neurosciences. 300, 141-154 (2015).
  23. Zhang, X., et al. Role of astrocytes in major neuropsychiatric disorders. Neurochemical Research. 46 (10), 2715-2730 (2021).
  24. Park, J., Ogunnaike, B., Schwaber, J., Vadigepalli, R. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability. Progress in Biophysics and Molecular Biology. 117 (1), 87-98 (2015).
  25. Lieber, C. S., DeCarli, L. M. An experimental model of alcohol feeding and liver injury in the baboon. Journal of Medical Primatology. 3 (3), 153-163 (1974).
  26. Lieber, C. S., Decarli, L. M. Animal models of chronic ethanol toxicity. Methods in Enzymology. 233, 585-594 (1994).
  27. Park, J., et al. Inputs drive cell phenotype variability. Genome Research. 24 (6), 930-941 (2014).
  28. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. , (1982).

Play Video

Citer Cet Article
O’Sullivan, S. J., Srivastava, A., Vadigepalli, R., Schwaber, J. S. Investigating Drivers of Antireward in Addiction Behavior with Anatomically Specific Single-Cell Gene Expression Methods. J. Vis. Exp. (186), e64014, doi:10.3791/64014 (2022).

View Video