Summary

在水凝胶中培养、冷冻、处理和成像整个类器官和球状体

Published: December 23, 2022
doi:

Summary

本研究描述了在各种显微镜下培养、冷冻、解冻、处理、染色、标记和检查整个球状体和类器官的方法,同时它们在多用途装置内的水凝胶中保持完整。

Abstract

类器官和球状体是细胞培养实验室中的三维生长结构,与二维培养模型相比,它们越来越被认为是优越的模型,因为它们可以更好地模仿人体并且比动物研究更具优势。然而,这些研究通常面临可重复性和一致性的问题。在漫长的实验过程中 – 在不同的细胞培养容器之间转移类器官和球状体,移液和离心 – 这些敏感和脆弱的3D生长结构经常被损坏或丢失。最终,结果会受到显着影响,因为3D结构无法保持相同的特性和质量。这里描述的方法最大限度地减少了这些压力步骤,并确保类器官和球体在整个处理过程中保持安全和一致的环境,同时它们仍在多用途装置中的水凝胶中。研究人员可以使用单个多用途设备在各种高科技仪器(从共聚焦到电子显微镜)下生长,冷冻,解冻,处理,染色,标记,然后检查类器官或微球的结构。该技术提高了研究的可重复性、可靠性和有效性,同时在加工过程中为3D生长结构保持稳定和保护性的环境。此外,消除压力大的步骤可最大限度地减少处理错误,减少所花费的时间,并降低污染风险。

Introduction

细胞研究和治疗的未来在于3D细胞培养123类器官和球状体模型通过创建更好的模型来模仿人体发育、生理学和疾病,缩小体实验和动物模型之间的差距456789。然而,这些模型的可重复性和可重复性仍然具有挑战性。此外,使用当前技术处理、收获、转移和离心这些结构会导致类器官和球体在许多情况下丢失或损坏,从而显着影响结果。

尽管有许多用于组织学染色、免疫组织化学染色、免疫荧光标记和冷冻保存的方案,但没有通用的方法可用于标准化实验条件、处理和处理这些脆弱的结构而不会丢失或损坏它们。目前的方案也非常长,从几天到几周不等,包括各种试剂10,11121314的复杂程序。此外,在细胞培养容器和冷冻管之间收获、移液、离心和转移 3D 生长结构会导致结构定位和机械力发生变化,并最终影响类器官和球状体的分化和成熟。据报道,组织拓扑结构、细胞定位和机械力显着影响细胞分化和成熟6151617

因此,需要改进现有的常规技术,以生成质量稳定的类器官和球状体。跳过上述离心和其他步骤并在多个过程的开始到结束的单一安全环境中提供材料的方法/设备将有利于获得最一致和可靠的数据。此外,这将减少时间、劳动力和成本限制。

此处描述的多用途器件(MD)为类器官和球状体的多个过程提供了单一的安全环境(补充1)。该设备和补充方案消除了收获、移液、转移和离心步骤。类器官和球状体在顺序过程中保持体 环境。这种环境主要包括天然或合成的细胞外基质成分,如市售水凝胶。换句话说,这里描述的方法允许在水凝胶滴中处理、检查和冷冻类器官/球状体的全安装样品。

生物相容性装置可耐受60°C至-160°C之间的温度,这使得在-160°C的液氮罐中恢复类器官/类固醇或在60°C下制备用于电子显微镜的树脂块是可行的。 该设备中的壁龛旨在为3D生长结构定义有限的空间,并根据先前的研究181920,212223刺激球状体或类器官的形成。设备的这一部分是透明的,并包含一种特殊的塑料,可提供高光学质量(折射率:1.43;阿贝值:58;厚度:7.8密耳[0.0078英寸或198微米])。壁龛和周围的“侧面”部分都会引起自发荧光。中间的透明壁龛具有 80 mm 2 区域,而侧面为 600 mm2。容器的深度为15毫米,厚度为1.5毫米。除了设备的尺寸和设计外,这些功能还可以在不同类型的高科技显微镜下进行观察,并为电子显微镜检查准备样品(图2)。设备的关闭系统提供两个位置,一个密封在冰箱中,另一个允许气体在培养箱中流动。与传统的细胞培养皿相比,CCK8增殖和细胞毒性测定对细胞的影响相似(补充2)。台盼蓝排除试验在MD细胞培养过程中显示出高细胞活力(94%)(3)。

可以在单个设备中对一个样品执行的过程包括(1)培养,(2)组织学染色,(3)免疫染色,包括免疫组织化学和免疫荧光标记,(4)冷冻,(5)解冻,(6)在光学显微镜下检查,例如明场,暗场,荧光,共聚焦和超分辨率显微镜,(7)直接在扫描电子显微镜下涂覆和检查,或(8)准备透射电子显微镜(图2)。

存在用于组织学染色、免疫组织化学标记或荧光标记类器官和球状体101112、13142425 的不同方法。从水凝胶中收获它们是当前技术的第一步,也是主要步骤。在此步骤之后,一些方法允许整体安装免疫标记。收获的类器官嵌入石蜡中,切片,并标记用于其他类器官的染色和免疫染色。但是,这些部分可能不会显示整个示例,并且仅提供与结构的 3D 架构相关的有限数据。此外,对这些3D结构的破坏和抗原性的丧失是这些技术众所周知的副作用。

本文中用于显微镜检查的补充新方案允许分析仍在水凝胶中的整个安装样品。这里描述的方案包括两种新开发的配方:免疫组织化学溶液(S-IHC)和免疫荧光标记溶液(S-IF)。这些解决方案的方法使研究人员能够获得更准确的数据,因为传统工作流程没有有害影响,例如离心、移液和转移精细结构。这里描述的方案还消除了收获,阻断,清除和抗原修复步骤的需要,并将整个过程缩短至6-8小时。此外,该方法允许同时向同一S-IF添加一到三种抗体。因此,即使在多次标记实验之后,也可以在同一天获得结果,这是此处描述的协议的另一个优点;传统的全接口免疫荧光标记方案通常需要3天到数周1011121314

石蜡包埋是另一个降低抗原性的有害步骤,也被省略了。3D结构从显微镜检查的开始到结束都保持在体外环境中。由于3D结构仍处于其生长状态,因此蛋白质表达和定位数据更好地模拟体内条件。由于该方法消除了影响样品抗原表达的步骤,因此预计结果会更准确。表12展示了与传统工作流程相比,这些新方案如何消除步骤,节省实验室时间和劳动力,并降低成本和浪费产品。

除了上述关键步骤外,另一个问题是提供一种冷冻保存介质和方法,以保存具有更高细胞活力率的样品的3D结构262728293031冷冻保存对于创建稳定的模型系统和实现类器官和球状体的生物样本库至关重要3233。生物样本库 整个原始3D结构将允许更忠实地概括健康或疾病的自然状态。关键考虑因素是冷冻保存和类器官/球状体解冻的便利性和可靠性在大多数当前技术中,解冻后类器官回收率非常低,通常低于50%。然而,最近的研究表明,存活率提高的结果很有希望26272829。Lee等人证明,当他们使用含有15%DMSO 28的威斯康星大学溶液时,78%的球状体细胞在冷冻保存后存活。在Arai等人的研究中,细胞存活率增加到83%29。然而,由于3D结构无法保持相同的特性和质量,冷冻保存后的结果会受到显着影响。此外,制药和诊断环境中的良好生产规范需要无血清试剂。 传统的工作流程使用含有胎牛血清(FBS)和二甲基亚砜(DMSO)的培养基进行慢冻方法,这两者都与障碍有关。FBS是一种动物源性产品,可以有批次变化。DMSO是一种非常成功的冷冻保护剂,但长期暴露,特别是在解冻期间,可能会导致细胞毒性作用3031

本文还介绍了整个类器官或球体在水凝胶中的冷冻/解冻方法。该研究使用了两种用于冷冻类器官和球状体的公式:(1)含有传统冷冻溶液(FS)的10%DMSO和(2)不含血清和DMSO的冷冻保存培养基。这种冷冻保存培养基含有细胞外基质成分,与目前的配方不同。细胞外基质包括两大类大分子,蛋白聚糖和纤维蛋白,它们对于细胞成分的物理支架至关重要,但也启动组织形态发生、分化和体内平衡所需的过程34,35,3637,383940.胶原蛋白提供拉伸强度,调节细胞粘附,支持趋化性和迁移性,并指导组织发育37。此外,弹性蛋白纤维为经历重复拉伸的组织提供反冲38。第三种纤维蛋白纤连蛋白指导间质细胞外基质的组织,在介导细胞附着中起着至关重要的作用,并起到细胞外机械调节剂的作用39。Du等人已经证明了鸡胶原蛋白水解物对天然肌动球蛋白模型系统的冷冻保护作用41。他们的结果表明,胶原蛋白水解物可以抑制冰晶生长,减少蛋白质冻变性和氧化,类似于商业冷冻保护剂,并在冻融循环后提供更好的凝胶结构。 因此,在冷冻保存培养基中添加细胞外基质成分为样品提供了更安全和保护性的环境,并支持活结构在冻融后愈合。

此外,本研究描述了一种简单的方案,当活类器官和球状体仍在水凝胶中时,标记它们的细胞质膜和细胞核。

Protocol

1. 培养类器官和球状体 将水凝胶放在冰上过夜(在冰箱或冷藏室中)解冻。 在实验前1天将市售的多用途装置(MD;参见 材料表)放入培养箱中(37°C,5%CO2)加热。 将无菌宽端移液器吸头放入4°C的冰箱中。注意:步骤 1.1-1.3 将在第 0 天执行,步骤 1.4-1.11 将在第 1 天执行。 将水凝胶放在层流罩中的冰上15分钟。可选:根据制?…

Representative Results

本文代表了一种多用途装置(MD)和补充方法,用于培养,冷冻,解冻,组织学染色,免疫组织化学染色,免疫荧光标记,包被和处理整个类器官或球状体,同时仍然在单一的独特设计环境中的水凝胶中。目前的研究旨在制备35个MD中的35水凝胶滴剂中的HepG2肝癌球状体。 实验一式三份进行以确保准确性。此外,MD中的肺类器官被免疫荧光标记作为一个例子,以证明当前类器官研究方法的结果。 <…

Discussion

MD补充了此处描述的配方和方案,有助于类器官和球体在更受控的环境中快速自发地3D生长,并在相同条件下继续实验。在整个过程中,标本保持在同一环境中,并且几乎100%的3D生长结构在容器中保持完整。这提高了连续实验期间的均质性,并允许延长培养期。此外,与传统工作流程(图4)相比,类器官和球体处理过程中的步骤数量大大减少,从而最大限度地减少了处理时?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢芝加哥大学的Dale Mertes准备图表,感谢Mehmet Serif Aydin博士在伊斯坦布尔Medipol大学健康科学与技术研究所的技术支持,感谢Maltepe大学的Rana Kazemi博士编辑手稿。

Materials

Absolute Ethanol (EtOH) Merck 8187602500 Dilute in dH2O to make 30%, 50%, 70%, 80%, 90% and 96% solution and store at RT
Acetone Merck 8222512500 Store at RT
Alexa fluor wheat germ agglutinin and Hoechst  in Hank's balanced salt solution (HBSS)   Invitrogen I34406 Image-IT LIVE Plasma Membrane and Nuclear Labeling Kit, Store at -20 °C
Alpha-1-Fetoprotein (AFP) Concentrated and Prediluted Polyclonal Antibody Biocare Medical CP 028 A Store at +4 °C
Anti-albumin antibody Abcam EPR20195 Store at +4 °C, Dilution: 1:50
Anti-beta galactosidase antibody, Chicken polyclonal Abcam 134435 Store at +4 °C, Dilution: 1:25
Anti-cytokeratin 5 Abcam 53121 Store at +4 °C, Dilution: 1:100
Arginase-1 Concentrated and Prediluted Rabbit Monoclonal Antibody Biocare Medical ACI 3058 A, B Store at +4 °C, Dilution: 1:50
Calcium chloride (CaCl2) Sigma C1016-500G Dissolve in Karnovsky's fixative to make 2 mM CaCl2; store at RT
Cell Counting Kit 8 (WST-8 / CCK8) Abcam ab228554
Centrifuge tubes, 15 mL  Nest 601051
Centrifuge tubes, 50 mL  Nest 602052
Class II Microbiological Safety Cabinet Bio II Advance Plus Telstar EN12469
CO2 Incubator Panasonic KM-CC17RU2
Copper Grids Electron Microscopy Sciences G100-Cu Ultra-thin sections put on the grids; 100 lines/inch square mesh
Critical Point Dryer Leica EM CPD300 For drying biological samples for SEM applications in absolute acetone
DAB/AEC chromogen solution mixture   Sigma Aldrich AEC101 Store at +4 °C
Diamond knife Diatome Ultra 45°, 40-US Use for ultra-thin sections for TEM
Dimethyl sulfoxide for molecular biology Biofroxx 67-68-5
Disposable Plastic Pasteur Pippettes Nest
DMEM – Dulbecco's Modified Eagle Medium Gibco 41966-029 Store at +4 °C
Eosin Y Solution Alcoholic Bright Slide 2.BS01-105-1000
Epon resin  Sigma 45359-1EA-F Epoxy Embedding Medium kit, Store at +4 °C
Fetal Bovine Serum with Additive Fortifier Pan Biotech P30-3304 Store at +4 °C
Freezing Solution (FS) Cellorama CellO-F Store at +4 °C
Glass knife maker Leica EM KMR3 For make glass knives in 8 mm thickness
Glass knife strips (Size 8 mm x 25.4 mm x 400 mm) Leica 7890-08 Use for ultra- or semi-thin sections for TEM
Glutaraldehyde Aqueous Solution, EM grade, 25%  Electron Microscopy Sciences 16210 Dilute in dH2O to make 2.5% solution and store at +4 °C
Glycerol solution Sigma Aldrich 56-81-5 Store at -20 C, Dilution :1:100
Goat anti-chicken IgY (H+L) Secondary Antibody,Alexa, 647 Invitrogen A32933 Store at RT
Goat anti-Mouse IgG (H+L) Secondary Antibody, DyLight, 488 Invitrogen 35502 Store at +4 °C,  Dilution :1:50
Goat anti-Mouse IgG (H+L) Secondary Antibody, DyLight, 550 Invitrogen 84540 Store at +4 °C,  Dilution :1:50
Goat anti-Rabbit IgG (H+L) Secondary Antibody, DyLight, 488 Invitrogen 35552 Store at +4 °C,  Dilution :1:50
Goat anti-Rabbit IgG (H+L) Secondary Antibody, DyLight, 550 Invitrogen 84541 Store at +4 °C
Hematoxylin Harris  Bright Slide 2.BS01-104-1000
HepG2 cells ATCC HB-8065 Store in nitrogen tank
Human/Rat OV-6 Antibody Monoclonal Mouse IgG1 Clone # OV-6 R&D Systems MAB2020 Store at -20 °C
Hydrogel Corning 354248 Matrigel, Basement Membrane Matrix High Concentration (HC), LDEV-free, 10 mL, Store at -20 °C
Hydrogel Corning 354234 Matrigel, Basement Membrane Matrix, LDEV-free, 10 mL, Store at -20 °C
Hydrogel ThermoFischer Scientific A1413201 Geltrex, LDEV-Free Reduced Growth Factor Basement Membrane Matrix
Hydrogel Biotechne, R&D Systems BME001-01 Cultrex Ultramatrix RGF BME, Store at -20 °C
Karnovsky's fixative %2 PFA, %2.5 Glutaraldehyde in 0.15 M Cacodylate Buffer, 2 mM CaCl2; prepare fresh; use for TEM & SEM samples
L-Aspartic acid Sigma 11189-100G Store at RT
Lead aspartate solution Dissolve 40 mg aspartic acid in 10 mL ddH2O and add 66 mg lead nitrate. Solution stabilize at 60 °C and adjust pH to 5; prepare fresh
Lead nitrate Electron Microscopy Sciences 17900 Store at RT
Leica Confocal Microscope Leica DMi8
LSM 700 Laser Scanning Confocal Microscope Zeiss
Microplate reader Biotek Synergy
Multipurpose Device (MD) Cellorama CellO-M
Nuclear-DNA stain Invitrogen H3569 Hoechst 33258, Pentahydrate (bis-Benzimide) – 10 mg/mL Solution in Water, Store at +4 °C
Nuclear-DNA stain ThermoFischer Scientific 62248 DAPI solution, Store at +4 °C
Osmium Tetroxide (OsO4) ,4% Electron Microscopy Sciences 19190 Dilute in dH2O to make 2% solution; store at +4 °C and in airtight container; protect light
Ov6 antibody R&D systems MAB2020 Store at +4 °C
Paraformaldehyde (PFA) solution, 4%  Sigma 1.04005.1000 Dissolve 4% PFA in dH2O and boil, cool and aliquot; store at -20 °C
Paraformaldehyde solution 4% in PBS, 1 L Santa Cruz Biotechnology sc-281692 Store at +4 °C
Phosphate Buffered Saline (PBS), tablets MP Biomedicals, LLC 2810305
Post-fixative solution %2 OsO4, %2.5 Potassium Ferrocyanide in dH2O; prepare fresh
Potassium Ferrocyanide aqueous solution, 5%  Electron Microscopy Sciences 26603-01 Store at RT
Primovert – Inverted Bright Field Microscope – ZEISS Zeiss Item no.: 491206-0001-000
Round bottom microcentrifuge tubes, 2 mL Nest 620611
Scanning Electron Microscopy with STEM attachment Zeiss GeminiSEM 500 We use Inlens Secondary Electron (SE) detector at 2-3 kV for scanning electron micrographs and aSTEM detector at 30 kV for transmission electron micrographs.
SensiTek HRP Anti-Polyvalent Lab Pack ScyTek Laboratories SHP125 Store at +4 °C
Sodium Cacodylate Buffer, 0.4 M, pH 7.2 Electron Microscopy Sciences 11655 Dilute in dH2O to make 0.2 M and store at +4 °C
Sodium/Potassium ATPase alpha 1 antibody [M7-PB-E9] GeneTex GTX22871 Store at -20 °C
Solution for Immunofluorescence Labeling (S-IF) Cellorama CellO-IF Store at +4 °C
Solution for Immunohistochemistry (S-IHC) Cellorama CellO-P Store at +4 °C
Specimen trimming device Leica EM TRIM2 For prepare epon sample block to ultramicrotome
Sputter coater Leica EM ACE200 Coat the SEM samples with 6 nm gold/palladium for 90 s
Thiocarbohydrazide (TCH) Sigma 223220-5G Dilute in dH2O to make 0.5% solution and filter with 0.22 µm membrane filter; store at RT; prepare fresh
Trypan Blue Solution, 0.4% Gibco 15250061
Ultra gel super glue Pattex PSG2C For glue polymerized epon block with sample to holder epon block
Ultramicrotome Leica EM UC7 For prepare high-quality ultra- or semi-thin sections for transmission electron microscopy (TEM)
Universal Pipette Tips, 10 µL Nest 171215-1101
Universal Pipette Tips, 1000 µL Isolab L-002
Universal Pipette Tips, 200 µL  Nest 110919HA01
Uranyl Acetate Electron Microscopy Sciences 22400 Dilute in dH2O to make 2% solution and filter with 0.22 µm membrane filter; keep tightly closed container store at RT

References

  1. Clevers, H. Modeling development and disease with organoids. Cell. 165 (7), 1586-1597 (2016).
  2. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  3. Nath, S., Devi, G. R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & Therapeutics. 163, 94-108 (2016).
  4. Bartfeld, S., Clevers, H. Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine. 95 (7), 729-738 (2017).
  5. Marsee, A., et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell. 28 (5), 816-832 (2021).
  6. Hautefort, I., Poletti, M., Papp, D., Korcsmaros, T. Everything you always wanted to know about organoid-based models (and never dared to ask). Cellular and Molecular Gastroenterology and Hepatology. 14 (2), 311-331 (2022).
  7. Kakni, P., Truckenmüller, R., Habibović, P., Giselbrecht, S. Challenges to, and prospects for, reverse engineering the gastrointestinal tract using organoids. Trends in Biotechnology. 40 (8), 932-944 (2022).
  8. Eglen, R. M., Reisine, T. Human iPS cell-derived patient tissues and 3D cell culture part 2: spheroids, organoids, and disease modeling. SLAS Technology: Translating Life Sciences Innovation. 24 (1), 18-27 (2019).
  9. Chatzinikolaidou, M. Cell spheroids: the new frontiers in in vitro models for cancer drug validation. Drug Discovery Today: Technologies. 21 (9), 1553-1560 (2016).
  10. Rios, A. C., Clevers, H. Imaging organoids: a bright future ahead. Nature Methods. 15 (1), 24-26 (2018).
  11. Dekkers, J. F., et al. High-resolution 3D imaging of fixed and cleared Organoids. Nature Protocols. 14 (6), 1756-1771 (2019).
  12. Renner, H., Otto, M., Grabos, M., Schöler, H. R., Bruder, J. M. Fluorescence-based single-cell analysis of whole-mount-stained and cleared microtissues and organoids for high throughput screening. Bio-protocol. 11 (12), (2021).
  13. Edwards, S. J., et al. High-resolution imaging of tumor spheroids and organoids enabled by expansion microscopy. Frontiers in Molecular Biosciences. 7, 208 (2020).
  14. Bergdorf, K. N., et al. Immunofluorescent staining of cancer spheroids and fine-needle aspiration-derived organoids. STAR Protocols. 2 (2), 100578 (2021).
  15. Foty, R. A., Pfleger, C. M., Forgacs, G., Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development. 122 (5), 1611-1620 (1996).
  16. Jia, D., Dajusta, D., Foty, R. A. Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells. Developmental Dynamics. 236 (8), 2039-2049 (2007).
  17. Foty, R. A., Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Biologie du développement. 278 (1), 255-263 (2005).
  18. Laschke, M. W., Menger, M. D. Life is 3D: boosting spheroid function for tissue engineering. Trends in Biotechnology. 35 (2), 133-144 (2017).
  19. Sant, S., Johnston, P. A. The production of 3D tumor spheroids for cancer drug discovery. Drug Discovery Today: Technologies. 23, 27-36 (2017).
  20. Marrero, B., Messina, J. L., Heller, R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. In Vitro Cellular & Developmental Biology. Animal. 45 (9), 523-534 (2009).
  21. Napolitano, A. P., et al. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques. 43 (4), 494-500 (2007).
  22. Ferreira, L. P., Gaspar, V. M., Mano, J. F. Design of spherically structured 3D in vitro tumor models-Advances and prospects. Acta Biomaterialia. 75, 11-34 (2018).
  23. Kim, S., et al. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Acta Biomaterialia. 142, 60-72 (2022).
  24. Cukierman, E., Pankov, R., Yamada, K. M. Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology. 5 (5), 633-640 (2002).
  25. Sargenti, A., et al. A new method for the study of biophysical and morphological parameters in 3D cell cultures: Evaluation in LoVo spheroids treated with crizotinib. PLoS One. 16 (6), 0252907 (2021).
  26. Jeong, Y., et al. Vitrification for cryopreservation of 2D and 3D stem cells culture using high concentration of cryoprotective agents. BMC Biotechnology. 20 (1), 45-54 (2020).
  27. Lee, J. H., Jung, D. H., Lee, D. H., Park, J. K., Lee, S. K. Effect of spheroid aggregation on susceptibility of primary pig hepatocytes to cryopreservation. Transplantation Proceedings. 44 (4), 1015-1017 (2012).
  28. Lee, B. E., et al. A simple and efficient cryopreservation method for mouse small intestinal and colon organoids for regenerative medicine. Biochemical and Biophysical Research Communications. 595, 14-21 (2022).
  29. Arai, K., Murata, D., Takao, S., Verissiomo, A. R., Nakayama, K. Cryopreservation method for spheroids andfabrication of scaffold-free tubular constructs. PLoS One. 15 (4), (2020).
  30. Awan, M., et al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity. Regenerative Medicine. 15 (3), 1463-1491 (2020).
  31. Erol, O. D., Pervin, B., Seker, M. E., Aertes-Kaya, F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World Journal of Stem Cells. 13 (9), 1197-1214 (2021).
  32. De Angelis, M. L., et al. Colorectal cancer spheroid biobanks: multi-level approaches to drug sensitivity studies. Cell Biology and Toxicology. 34 (6), 459-469 (2018).
  33. Botti, G., Di Bonito, M., Cantile, M. Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. International Journal of Physiology Pathophysiology and Pharmacology. 13 (1), 17-21 (2021).
  34. Jarvelainen, H., Sainio, A., Koulu, M., Wight, T. N., Penttinen, R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacological Reviews. 61 (2), 198-223 (2009).
  35. Nelson, C. M., Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology. 22, 287-309 (2006).
  36. Schaefer, L., Schaefer, R. M. Proteoglycans: from structural compounds to signaling molecules. Cell and Tissue Research. 339 (1), 237-246 (2010).
  37. Rozario, T., DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Biologie du développement. 341 (1), 126-140 (2010).
  38. Wise, S. G., Weiss, A. S. Tropoelastin. International Journal of Biochemistry & Cell Biology. 41 (3), 494-497 (2009).
  39. Smith, M. L., et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5 (10), (2007).
  40. Carvallo, M. P., Costa, E. C., Miguel, S. P., Correia, I. J. Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carbohydrate Polymers. 150, 139-148 (2016).
  41. Du, L., Betti, M. Chicken collagen hydrolysate cryoprotection of natural actomyosin: Mechanism studies during freeze-thaw cycles and simulated digestion. Food Chemistry. 211, 791-802 (2016).
  42. Wang, X., et al. The significance of arginase-1 expression in the diagnosis of liver cancer: A protocol for a systematic review. Médecine. 99 (9), 19159 (2020).
  43. Radwan, N. A., Ahmed, N. S. The diagnostic value of arginase-1 immunostaining in differentiating hepatocellular carcinoma from metastatic carcinoma and cholangiocarcinoma as compared to HepPar-1. Diagnostic Pathology. 7, 149 (2012).
  44. Chen, A., Guo, Z., Fang, L., Blan, S. Application of fused organoid models to study human brain development and neural disorders. Frontiers in Cellular Neuroscience. 14, 133 (2020).
  45. Xiang, Y., et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21 (3), 383-398 (2017).
  46. Kosheleva, N. V., et al. Cell spheroid fusion: beyond liquid drops model. Scientific Reports. 10 (1), 12614 (2020).
  47. Arai, K., Murata, D., Takao, S., Verissiomo, A. R., Nakayama, K. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs. PloS One. 15 (4), 0243248 (2020).
check_url/fr/64563?article_type=t

Play Video

Citer Cet Article
Tok, O. E., Demirel, G., Saatci, Y., Akbulut, Z., Kayalar, O., Aktas, R. G. Culturing, Freezing, Processing, and Imaging of Entire Organoids and Spheroids While Still in a Hydrogel. J. Vis. Exp. (190), e64563, doi:10.3791/64563 (2022).

View Video