Summary

使用加热块确定浮游动物的热限值

Published: November 18, 2022
doi:

Summary

本协议说明了使用市售组件来产生稳定和线性的热梯度。然后,这种梯度可用于确定浮游生物,特别是无脊椎动物幼虫的热上限。

Abstract

热极限和广度已被广泛用于预测物种分布。随着全球气温的持续上升,了解热极限如何随着驯化而变化以及它在生命阶段和种群之间如何变化对于确定物种对未来变暖的脆弱性至关重要。大多数海洋生物具有复杂的生命周期,包括早期浮游阶段。虽然量化这些小的早期发育阶段(数十到数百微米)的热极限有助于识别发育瓶颈,但由于目标生物体体积小、工作台空间要求大以及初始制造成本高,这一过程可能具有挑战性。这里介绍了一种面向小体积(mL至数十mL)的设置。该设置结合了市售组件,以产生稳定和线性的热梯度。还介绍了该装置的生产规格,以及引入和枚举活体与死体以及计算致死温度的程序。

Introduction

耐热性是生物生存和功能的关键12。随着人为碳排放导致地球继续变暖,热极限的确定和应用越来越受到关注3.各种终点,如死亡率、发育迟缓和活动能力丧失,已被用于确定热上限和下限4。这些热极限通常被认为是生物体热生态位的代表。这些信息反过来用于识别更容易受到全球变暖影响的物种,以及预测未来的物种分布和由此产生的物种相互作用3567然而,确定热极限,特别是对于小型浮游生物,可能具有挑战性。

对于浮游生物,特别是海洋无脊椎动物的幼虫阶段,可以通过长期暴露来确定热极限。慢性暴露是通过在数天至数周内在几个温度下饲养幼虫并确定幼虫存活率和/或发育率降低的温度来实现的8,910然而,这种方法相当耗时,需要大型孵化器和幼虫饲养经验(有关培养海洋无脊椎动物幼虫的良好介绍,请参见参考文献11)。

或者,急性暴露于热应力可用于确定热极限。通常,这种测定方法涉及将带有幼虫的小瓶放入温控干浴1213,14中,利用PCR热循环仪15,16中的热梯度功能,或将玻璃小瓶/微量离心管沿着施加加热和冷却产生的热梯度放置在大铝块的末端,这些铝块带有小瓶紧贴的孔17 1819.典型的干浴产生单一温度;因此,必须同时运行多个单元,以评估不同温度范围内的性能。热循环仪产生梯度,但只能容纳少量样品(120 μL),并且需要仔细操作。与热循环仪类似,大型铝块可产生线性且稳定的温度梯度。这两种方法都可以与逻辑或概率回归相结合,以计算50%人口(LT50)的致死温度122021。但是,使用的铝块长~100厘米;这种尺寸需要较大的实验室空间,并使用专门的计算机数控铣床来钻孔。再加上使用两个研究级水浴来保持目标温度,组装装置的财务成本很高。

因此,这项工作旨在开发一种替代方法,以使用市售部件生成稳定的线性温度梯度。这种产品必须具有较小的占地面积,并且应该能够轻松用于浮游生物的急性热应力暴露实验。该协议是用大小为<1 mm的浮游动物作为目标生物开发的,因此,它针对使用1.5或2 mL微量离心管进行了优化。较大的研究生物体将需要大于所用 1.5 mL 微量离心管的容器和铝块上的扩大孔。

除了使实验装置更易于访问之外,这项工作还旨在简化数据处理管道。虽然商业统计软件提供了使用逻辑或概率回归计算LT50 的例程,但许可成本并非微不足道。因此,依赖于开源统计程序R22 的易于使用的脚本将使数据分析更易于访问。

该协议展示了如何使用市售部件制造紧凑的加热块,并应用于将浮游动物(沙美元 Dendraster excentricus的幼虫)暴露于急性热应激以确定其热上限。

Protocol

1. 加热块的制造 将 120 V、100 W 带状加热器连接到变阻器(参见 材料表)。 通过在 6 x 10 网格中钻 60 个孔来准备 20.3 厘米 x 15.2 厘米 x 5 厘米(8 英寸 x 5 英寸 x 2 英寸)铝块(请参阅 材料表)。确保孔在两个方向上从中心到中心间隔 2 厘米。每个直径应为1.1厘米,深4.2厘米(图1)。注意: 使用高速钢钻头在铣床或钻床…

Representative Results

该协议的目标是确定浮游动物的热上限。为此,需要稳定和线性的热梯度。通过将水浴温度设置为8°C,将加热器设置为39°C,所提出的设置能够产生14°C至40°C的热梯度(图2A)。温度梯度可以通过改变端点值来缩小和移动。通过将加热器设置为37°C,将水浴设置为15°C,还产生了范围较窄(19°C至37°C)的热梯度。 块中的温度在设置后45分钟至1小时内稳定(图2…

Discussion

该协议提供了一种可访问和可定制的方法,通过急性热暴露来确定小型浮游生物的热极限。10孔设计和灵活的温度端点,由下端的水浴和上端的加热器控制,使人们能够精确地确定LT50。使用这种方法,可以检测到<1°C的热极限差异(图3)。这种方法可以快速确定各种物种的热极限(以小时为单位),并且结果值已应用于多种物种分布模型2,</sup…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了斯沃斯莫尔学院[KC]的教师研究基金以及BJ的Robert Reynolds和Lucinda Lewis’70暑期研究奖学金的支持。

Materials

0.45 µm membrane filter VWR 74300-042
½” Acrylic sheet McMaster-Carr 8560K266 Used to construct a ridged case with sufficient insulation.
1 mL syringe VWR 76290-420
2 Channel 7 Thermocouple Types Datalogger Omega Engineering HH506A Can be replaced with any thermometer that will fit inside a microcentrifuge tube
Automatic pipette  Ranin 
Bolt- and Clamp-Mount Strip Heater
with 430 Stainless Steel Sheath, 120V AC, 1-1/2" Wide, 100W
McMaster-Carr 3619K32
Crystal Sea Bioassay Mix Pentair CM2B Use to make aritifical seawater 
Denraster excentricus M-Rep  Sand dollars from California 
Dissecting microscope  Nikon  SMZ645
DIYhz Aluminum Water Cooling Block, Liquid Water Cooler Heat Sink System for PC Computer CPU Graphics Radiator Heatsink Endothermic Head Silver(40 mm x 120 mm x 12 mm) Amazon Connects to water bath and used to cool one end of the block.
Easy-to-Machine MIC6 Cast Aluminum Sheet 2" thick 8" x 8"  McMaster-Carr 86825K953 Machined to 2" x 6" x 8" with 60 equally spaced holes (11 mm dia., 42 mm depth) with two addition holes drilled in one side for thermostat probes.
Economical Flexible Polyethylene Foam Pipe Insulation McMaster-Carr 4530K121 Covers the plastic tubing between chiller and block to reduce heat loss. Can be omitted if temperature range is close to room temperature 
EVERSECU 72w 110-240v Aquarium Water Chiller Warmer/Cooler Temperature Controller for Fish Shrimp Tank Marine Coral Reef Tank Below 20 L/30 L Aquarium Chiller Amazon Can be used in place of the lab-grade water bath 
Example with larval sand dollar 
GENNEL 100 g Silver Silicone Thermal Conductive Compound Grease Paste For GPU CPU IC LED Ovens Cooling Amazon Improves the thermal conductance between the block and the heating and cooling elements.
Inkbird WiFi Reptile Thermostat Temperature Controller with 2 Probes and 2 Outlets, IPT-2CH Reptiles Heat Mat Thermostat (Max 250 W per Outlet) Amazon Monitors hot and cold ends. Maintains hot end in range
Lauda Ecoline Silver Air-Cooled Refrigerated Circulators VWR 89202-386 Can be replaced with an aquarium chiller 
Microcentrifuge Tubes VWR 76019-014 If larger animals are used, scanilation vials (VWR 66022-004) is a good alternative 
Nitex mesh filter  Self made Used hot glue to attached Nitex mesh to 1/2" PVC tubing 
Pasteur pipette VWR 14673-010
Potassium Chloride (0.35 M)  Millpore-Sigma P3911-500G
R statistical software.  The R Project for Statistical Computing
Syringe needle VWR 89219-346 Depending on size of target organism gague 14 and 16 can be used
Tygon Tubing  McMaster-Carr 5233K65 Adjust to match the chiller and block used 
Zoo Med Repti Temp Rheostat Chewy.com Rated to 150 W and rewired to feed directly into the heating element. Used to control rate of heat output

References

  1. Dowd, W. W., King, F. A., Denny, M. W. Thermal variation, thermal extremes and the physiological performance of individuals. Journal of Experimental Biology. 218 (12), 1956-1967 (2015).
  2. García, F. C., Bestion, E., Warfield, R., Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences. 115 (43), 10989-10994 (2018).
  3. Sinclair, B. J., et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures. Ecology Letters. 19 (11), 1372-1385 (2016).
  4. Lutterschmidt, W. I., Hutchison, V. H. The critical thermal maximum: history and critique. Canadian Journal of Zoology. 75 (10), 1561-1574 (1997).
  5. Bennett, J. M., et al. The evolution of critical thermal limits of life on Earth. Nature Communications. 12 (1), 1198 (2021).
  6. Sunday, J. M., Bates, A. E., Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nature Climate Change. 2 (9), 686-690 (2012).
  7. Deutsch, C. A., et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences. 105 (18), 6668-6672 (2008).
  8. Collin, R., Chan, K. Y. K. The sea urchin Lytechinus variegatus lives close to the upper thermal limit for early development in a tropical lagoon. Ecology and Evolution. 6 (16), 5623-5634 (2016).
  9. Wang, W., Ding, M. -. w., Li, X. -. x., Wang, J., Dong, Y. -. w. Divergent thermal sensitivities among different life stages of the pulmonate limpet Siphonaria japonica. Marine Biology. 164 (6), 1-10 (2017).
  10. Mak, K. K. -. Y., Chan, K. Y. K. Interactive effects of temperature and salinity on early life stages of the sea urchin Heliocidaris crassispina. Marine Biology. 165 (3), 1-11 (2018).
  11. Strathmann, R. R. Culturing larva of marine invertebrates. Developmental Biology of the Sea Urchin and Other Marine Invertebrates. , 1-25 (2014).
  12. Stillman, J. H., Somero, G. N. A comparative analysis of the upper thermal tolerance limits of Eastern Pacific porcelain crabs, Genus Petrolisthes: Influences of latitude, vertical Zonation, acclimation, and phylogeny. Physiological and Biochemical Zoology. 73 (2), 200-208 (2000).
  13. Sasaki, M. C., Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Global Change Biology. 25 (12), 4147-4164 (2019).
  14. Sasaki, M. C., Dam, H. G. Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecology and Evolution. 10 (21), 12200-12210 (2020).
  15. Kelly, M. W., Sanford, E., Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society B: Biological Sciences. 279 (1727), 349-356 (2012).
  16. Rivera, H. E., Chen, C. -. Y., Gibson, M. C., Tarrant, A. M. Plasticity in parental effects confers rapid larval thermal tolerance in the estuarine anemone Nematostella vectensis. Journal of Experimental Biology. 224 (5), 236745 (2021).
  17. Sewell, M. A., Young, C. M. Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. Journal of Experimental Marine Biology and Ecology. 236 (2), 291-305 (1999).
  18. Walther, K., Crickenberger, S. E., Marchant, S., Marko, P. B., Moran, A. L. Thermal tolerance of larvae of Pollicipes elegans, a marine species with an antitropical distribution. Marine Biology. 160 (10), 2723-2732 (2013).
  19. Byrne, M., Gall, M. L., Campbell, H., Lamare, M. D., Holmes, S. P. Staying in place and moving in space: contrasting larval thermal sensitivity explains distributional changes of sympatric sea urchin species to habitat warming. Global Change Biology. 28 (9), 3040-3053 (2022).
  20. Zippay, M. L., Hofmann, G. E. Physiological tolerances across latitudes: thermal sensitivity of larval marine snails (Nucella spp). Marine Biology. 157 (4), 707-714 (2010).
  21. Collin, R., Rebolledo, A. P., Smith, E., Chan, K. Y. K. Thermal tolerance of early development predicts the realized thermal niche in marine ectotherms. Functional Ecology. 35 (8), 1679-1692 (2021).
  22. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. , (2021).
  23. Venables, W. N., Ripley, B. D. . Modern Applied Statistics with S-PLUS. Fourth edn. , (2002).
  24. Fumo, J. T., et al. Contextualizing marine heatwaves in the southern California bight under anthropogenic climate change. Journal of Geophysical Research: Oceans. 125 (5), (2020).
  25. Wheeler, M. W., Park, R. M., Bailer, A. J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environmental Toxicology and Chemistry: An International Journal. 25 (5), 1441-1444 (2006).
  26. Kingsolver, J. G., MacLean, H. J., Goddin, S. B., Augustine, K. E. Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Journal of Experimental Biology. 219 (9), 1290-1294 (2016).
  27. Kuo, E. S. L., Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Marine Ecology Progress Series. 388, 137-146 (2009).
  28. Hammond, L. M., Hofmann, G. E. Thermal tolerance of Strongylocentrotus purpuratus early life history stages: mortality, stress-induced gene expression and biogeographic patterns. Marine biology. 157 (12), 2677-2687 (2010).
  29. Sasaki, M., Dam, H. G. Global patterns in copepod thermal tolerance. Journal of Plankton Research. 43 (4), 598-609 (2021).

Play Video

Citer Cet Article
Chan, K. Y. K., Jorgensen, B. K., Scoma, S. Thermal Limits Determination for Zooplankton Using a Heat Block. J. Vis. Exp. (189), e64762, doi:10.3791/64762 (2022).

View Video