Summary

毛滴虫对肺腺癌作用机制的网络药理学预测及实验验证

Published: March 03, 2023
doi:

Summary

本研究基于网络药理学和实验验证,揭示了毛 滴虫治疗肺腺癌的机制 。该研究还表明,PI3K / AKT信号通路在 Trichosanthes-Fritillaria thunbergii 治疗肺腺癌中的作用中起着至关重要的作用。

Abstract

本文旨在基于网络药理学和实验验证,研究毛 滴虫 治疗肺腺癌(LUAD)的机制。采用中药高通量实验和参考引导(HERB)数据库和相似合体法(SEA)数据库收集毛 滴虫枸杞 子的有效成分和潜在靶点,并通过GeneCards和在线孟德尔遗传(OMIM)数据库查询LUAD相关靶点。利用Cytoscape软件构建了药物-成分-疾病-靶点网络。通过蛋白质-蛋白质相互作用(PPI)网络、基因本体(GO)功能、京都基因和基因组百科全书(KEGG)通路富集分析,获得核心靶点和关键通路。毛滴虫 -毛滴虫 和A549细胞的水提取物用于随后的实验验证。通过HERB数据库和文献检索,筛选出毛滴 的有效化合物和157个潜在靶基因,其中144个是毛 虫治疗肺腺癌的调控靶点。GO功能富集分析表明, 毛滴虫 对肺腺癌的作用机制主要是蛋白质磷酸化。KEGG通路富集分析表明, 毛滴虫 对肺腺癌的治疗主要涉及PI3K/AKT信号通路。实验验证表明, 毛滴虫 水提取物可以抑制A549细胞的增殖和AKT的磷酸化。通过网络药理学和实验验证,验证了PI3K/AKT信号通路在毛 滴虫 治疗肺腺癌中的作用中起着至关重要的作用。

Introduction

肺癌是指起源于肺支气管黏膜的恶性肿瘤,包括鳞状细胞癌、腺癌、大细胞癌、小细胞癌1。肺腺癌(LUAD)是最常见的肺癌类型,约占肺癌病例总数的40%2。大多数患者被诊断为晚期或有远处转移,因此失去了手术的机会3。在目前的临床治疗中,同步放化疗是治疗LUAD最常用的策略,但由于严重的不良反应,其应用受到限制4

中医可有效缓解LUAD患者的临床症状,减少放化疗引起的不良反应,成为研究热点567。在中医中,肺癌属于“肺蓄积”和“肺岩”的范畴。气虚和痰、瘀、毒的相互作用是肺癌发病的重要因素。因此,补气、化痰止血是临床上治疗肺癌的主要方法8 根据中医理论9.基里洛维特里科桑特斯Maxim(Gualou)和Fritillaria thunbergii Miq(Zhebeimu)代表了治疗肺癌的常见药物对,这种组合具有清热降痰的作用101112。然而,其作用机制仍不清楚,需要进一步研究。

网络药理学是一种基于系统生物学和多向药理学理论的综合方法,旨在揭示多种药物和疾病之间的复杂网络关系13。中国传统处方具有多组分、多靶点的特点,非常适合网络药理学研究1415。近年来,网络药理学已成为中药方剂研究的有力途径,成为研究热点1617

然而,据我们所知,所有关于网络药理学的研究都是以文本形式呈现的。通过视频展示这项技术将大大降低学习门槛,促进这项技术的推广,这是本文的优势之一。本研究以 毛滴虫抗 肺腺癌为例,开展网络药理学预测和实验验证。

Protocol

所有网络药理学程序均按照《网络药理学评价方法指南》18进行。所有实验程序均按照北京中医药大学实验室管理规定进行。 1.网络药理预测 有源组件的选择打开HERB数据库(http://herb.ac.cn)19,以“Gualou”( Trichosanthes kirilowii Maxim的中文名称)和“Zhebeimu”(Bulbus Fritillariae thunbergii的中文名称)作为关…

Representative Results

共鉴定出31个毛滴虫-松柏相关活性成分,包括21个毛滴虫和10个毛滴虫组分,以及144个相应的靶点。总体而言,分别从GeneCards数据库和OMIM数据库中提取了9,049个和67个LUAD相关基因。删除重复基因后,鉴定出9,057个与LUAD相关的基因。将LUAD相关基因与毛滴虫活性成分相关靶点进行交集,以获得潜在的治疗靶点。毛滴虫-毛滴虫对LUAD的药物-成分-疾病-靶点相互作用网?…

Discussion

通常,一个完整的网络药理学研究包括从数据库中识别活性成分,获取活性成分和疾病对应的靶点,构建药物-成分-疾病-靶点网络,以及核心靶点和途径的预测。通过计算机技术初步预测活性成分与核心蛋白之间的关联(分子对接),并通过实验进行最终验证。

相关数据库的选择是网络药理学最关键的部分,因为这决定了研究的质量。HERB数据库整合了Syμmap、TCMID、TCMSP和TCM-I…

Divulgations

The authors have nothing to disclose.

Acknowledgements

本研究得到了北京中医药大学创新培训计划(编号:202110026036)的支持。

Materials

0.25% trypsin-EDTA Gibco R001100
A549 cell line Procell CL-0016
AKT antibody CST 4691S
BCA Protein Assay Kit Solarbio PC0020
Chemiluminescence detection system Shanghai Qinxiang Scientific Instrument Factory ChemiScope 6100
Dulbecco's modified eagle medium (DMEM) Solarbio 11995
Enhanced chemiluminescence (ECL) kit  ABclonal RM00021
Fetal bovine serum ScienCell 0025
HRP Goat Anti-Rabbit IgG (H+L) ABclonal AS014
MTS assay kit Promega G3580
p-AKT antibody CST 6040S
Penicillin streptomycin Gibco C14-15070-063
Phenylmethanesulfonyl fluoride (PMSF) Solarbio P0100
Phosphatase inhibitor Beyotime P1081
Phosphate buffered saline (PBS) Solarbio P1020
Polyvinylidene difluoride (PVDF) membranes Millipore ISEQ00010
RIPA lysis solution Solarbio R0010
Rotary evaporator Shanghai Yarong Biochemical Instrument Factory RE52CS-1
Vacuum freeze-drying mechanism Ningbo Scientz Biotechnology SCIENTZ-10
β-Actin antibody ABclonal AC026

References

  1. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F., Heist, R. S. Lung cancer. The Lancet. 398 (10299), 535-554 (2021).
  2. Sinha, A., et al. Early-stage lung adenocarcinoma MDM2 genomic amplification predicts clinical outcome and response to targeted therapy. Cancers. 14 (3), 708 (2022).
  3. Howlader, N., et al. The effect of advances in lung-cancer treatment on population mortality. The New England Journal of Medicine. 383 (7), 640-649 (2020).
  4. Hirsch, F. R., et al. Lung cancer: Current therapies and new targeted treatments. The Lancet. 389 (10066), 299-311 (2017).
  5. Liu, J., et al. Comprehensive treatment with Chinese medicine in patients with advanced non-small cell lung cancer: A multicenter, prospective, cohort study. Chinese Journal of Integrative Medicine. 23 (10), 733-739 (2016).
  6. Xiao, Z. W., et al. Comprehensive TCM treatments combined with chemotherapy for advanced non-small cell lung cancer: A randomized, controlled trial. Médecine. 100 (18), 25690 (2021).
  7. Li, Y., et al. Effectiveness of traditional Chinese medicine on chemoradiotherapy induced leukaemia in patients with lung cancer: A meta-analysis. Journal of Traditional Chinese Medicine. 38 (5), 661-667 (2018).
  8. Yuan, F., et al. Therapeutic effect and apoptosis mechanism of lung-tonifying and expectorant decoction on lung cancer rats with Qi deficiency and blood stasis. Asian Pacific Journal of Tropical Medicine. 8 (11), 983-988 (2015).
  9. Zhang, Y. L., Liang, Y. E., He, C. W. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chinese Medicine. 12, 20 (2017).
  10. Wang, T. B., et al. Exploring the rules of application of RONG Yuan-ming in the treatment of non-small cell lung cancer. Guiding Journal of Traditional Chinese Medicine and Pharmacy. 25 (14), 22-25 (2019).
  11. Chen, T. T., Wang, Y., Tian, T. Medication regularity and mechanism of traditional Chinese medicine in treating lung cancer. Chinese Journal of Experimental Traditional Medical Formulae. 24 (11), 206-210 (2018).
  12. Shen, C. J. Analysis of the rule of Chinese medicine in treating lung cancer. Journal of Shandong University of Traditional Chinese Medicine. 35 (2), 127-129 (2011).
  13. Yang, X. Y., et al. Evidence-based complementary and alternative medicine bioinformatics approach through network pharmacology and molecular docking to determine the molecular mechanisms of Erjing pill in Alzheimer’s disease. Experimental and Therapeutic Medicine. 22 (5), 1252 (2021).
  14. Chen, G. Y., et al. Network pharmacology analysis and experimental validation to investigate the mechanism of total flavonoids of Rhizoma Drynariae in treating rheumatoid arthritis. Drug Design Development and Therapy. 16, 1743-1766 (2022).
  15. Chen, G. Y., et al. Integrating network pharmacology and experimental validation to explore the key mechanism of Gubitong recipe in the treatment of osteoarthritis. Computational and Mathematical Methods in Medicine. 2022, 7858925 (2022).
  16. Xie, G. G., et al. A network pharmacology analysis to explore the effect of Astragali Radix-Radix Angelica Sinensis on traumatic brain injury. BioMed Research International. 2018, 3951783 (2018).
  17. Chen, G. Y., et al. Prediction of Rhizoma Drynariae targets in the treatment of osteoarthritis based on network pharmacology and experimental verification. Evidence Based Complementary and Alternative Medicine. 2021, 5233462 (2021).
  18. World Federation of Chinese Medicine Societies. Network pharmacology evaluation methodology guidance. World Chinese Medicine. 16 (4), 527-532 (2021).
  19. Fang, S. S., et al. A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Research. 49, 1197-1206 (2021).
  20. Chen, G. Y., et al. Network pharmacology-based strategy to investigate the mechanisms of Cibotium barometz in treating osteoarthritis. Evidence-Based Complementary and Alternative Medicine. 2022, 1826299 (2022).
  21. Yu, J. H., et al. ZiYinHuaTan recipe inhibits cell proliferation and promotes apoptosis in gastric cancer by suppressing PI3K/AKT pathway. BioMed Research International. 2020, 2018162 (2020).
  22. Daina, A., Michielin, O., Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 7, 42717 (2017).
  23. Keiser, M. J., et al. Relating protein pharmacology by ligand chemistry. Nature Biotechnology. 25 (2), 197-206 (2007).
  24. Safran, M., et al. GeneCards Version 3: The human gene integrator. Database. 2010, (2010).
  25. Amberger, J. S., Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes. Current Protocols in Bioinformatics. 58, 1-12 (2017).
  26. Mering, C. V., et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research. 33, 433-437 (2005).
  27. Zhou, Y. Y., et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications. 10, 1523 (2019).
  28. Pundir, S., et al. UniProt protein knowledgebase. Methods in Molecular Biology. 1558, 41-55 (2017).
  29. Burley, S. K., et al. Protein data bank (PDB): The single global macromolecular structure archive. Methods in Molecular Biology. 1607, 627-641 (2017).
  30. Welsh, L. C., Welsh, M. VEGFA and tumour angiogenesis. Journal of Internal Medicine. 273 (2), 114-127 (2013).
  31. Hsu, L. H., Chu, N. M., Kao, S. H. Estrogen, estrogen receptor and lung cancer. International Journal of Molecular Sciences. 18 (8), 1713 (2017).
  32. Atmaca, A., et al. SNAI2/SLUG and estrogen receptor mRNA expression are inversely correlated and prognostic of patient outcome in metastatic non-small cell lung cancer. BMC Cancer. 15, 300 (2015).
  33. Lakshmi, S. P., Reddy, A. T., Banno, A., Reddy, R. C. PPAR agonists for the prevention and treatment of lung cancer. PPAR Research. 2017, 8252796 (2017).
  34. Oguro, A., Sakamoto, K., Funae, Y., Imaoka, S. Overexpression of CYP3A4, but not of CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug Metabolism and Pharmacokinetics. 26 (4), 407-415 (2011).
  35. Jamroze, A., Chatta, G., Tang, D. G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Letters. 518, 1-9 (2021).
  36. Wu, Y. I., et al. Regulation of global gene expression and cell proliferation by APP. Scientific Reports. 6, 22460 (2016).
  37. Sedlář, A., et al. Growth factors VEGF-A 165 and FGF-2 as multifunctional biomolecules governing cell adhesion and proliferation. International Journal of Molecular Sciences. 22 (4), 1843 (2021).
  38. Guo, L. H., Yin, M., Wang, Y. X. CREB1, a direct target of miR-122, promotes cell proliferation and invasion in bladder cancer. Oncology Letters. 16 (3), 3842-3848 (2018).
  39. Wang, D. D., et al. Induction of CYP1A1 increases gefitinib-induced oxidative stress and apoptosis in A549 cells. Toxicology In Vitro. 44, 36-43 (2017).
  40. Tan, A. C. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thoracic Cancer. 11 (3), 511-518 (2020).
  41. Jin, X., et al. RBM10 inhibits cell proliferation of lung adenocarcinoma via RAP1/AKT/CREB signalling pathway. Journal of Cellular and Molecular Medicine. 23 (6), 3897-3904 (2019).
  42. Henkels, K. M., et al. Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene. 32 (49), 5551-5562 (2013).
  43. Zhang, Z. Y., et al. CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis. Scientific Reports. 10, 490-493 (2020).
  44. Gao, T. X., et al. Exploring the mechanism of Fu-Zi Decoction in treatment of chronic heart failure based on network pharmacology and molecular docking technology. Journal of Chinese Pharmaceutical Sciences. 30 (09), 705-715 (2021).
  45. Wang, B., et al. PP4C facilitates lung cancer proliferation and inhibits apoptosis via activating MAPK/ERK pathway. Pathology, Research and Practice. 216 (5), 152910 (2020).
  46. Moon, M. Y., et al. Rap1 regulates hepatic stellate cell migration through the modulation of RhoA activity in response to TGF-β1. International Journal of Molecular Medicine. 44 (2), 491-502 (2019).
  47. Kan, J., et al. He-Chan Pian inhibits the metastasis of non-small cell lung cancer via the miR-205-5p-mediated regulation of the GREM1/Rap1 signaling pathway. Phytomedicine. 94, 153821 (2022).
  48. Sidrat, T., et al. Role of Wnt signaling during in-vitro bovine blastocyst development and maturation in synergism with PPARδ signaling. Cells. 9 (4), 923 (2020).
  49. Wagner, N., Wagner, K. D. PPAR beta/delta and the hallmarks of cancer. Cells. 9 (5), 1133 (2020).
  50. Miriam, M., et al. PI3K/AKT signaling pathway and cancer: An updated review. Annals of Medicine. 46 (6), 372-383 (2014).
  51. Ma, X. L., et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. Journal of Hematology & Oncology. 12 (1), 37 (2019).
  52. Li, T., et al. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPARγ expression mediated by PI3K-AKT signaling pathway. Biomedicine & Pharmacotherapy. 131, 110769 (2020).
check_url/fr/64847?article_type=t

Play Video

Citer Cet Article
Zhao, X., Yang, Y., Feng, J., Feng, C. Network Pharmacology Prediction and Experimental Validation of TrichosanthesFritillaria thunbergii Action Mechanism Against Lung Adenocarcinoma. J. Vis. Exp. (193), e64847, doi:10.3791/64847 (2023).

View Video