Summary

Omprogrammering humane somatiske celler i induceret pluripotente stamceller (IPSC'er) under anvendelse af retroviral vektor med GFP

Published: April 03, 2012
doi:

Summary

En fremgangsmåde til at generere humane inducerede pluripotente stamceller (IPSC'er) via retrovirus-medieret ektopisk ekspression af OCT4 er SOX2, KLF4 og MYC beskrevet. En praktisk måde at identificere menneskelige IPSC kolonier baseret på GFP-ekspression er også diskuteret.

Abstract

Humane embryonale stamceller (hESCs) er pluripotente og en uvurderlig cellulære kilder til in vitro sygdom modellering og regenerativ medicin 1. Det er tidligere blevet vist, at humane somatiske celler kan omprogrammeres til pluripotens ved ektopisk ekspression af fire transkriptionsfaktorer (Oct4, Sox2, Klf4 og Myc) og blive induceret pluripotente stamceller (IPSC'er) 2-4. Ligesom hESCs, er menneskelige IPSC'er pluripotente og en potentiel kilde til autologe celler. Her beskriver vi den protokol, at omprogrammere humane fibroblastceller med de fire omprogrammeringsbeslutninger faktorer klonet i GFP-holdige retroviral rygraden 4. Brug følgende protokol, vi skaber menneskelige IPSC'er i 3-4 uger under menneskelige ESC kultur tilstand. Humane IPSC kolonier ligner hESCs i morfologi og viser tab af GFP-fluorescens som følge af retroviral transgen lyddæmpning. IPSC kolonier isoleres mekanisk under en fluorescens microscoPE opføre sig på samme måde som hESCs. I disse celler, detektere vi ekspressionen af ​​multiple pluripotens gener og overflademarkører.

Protocol

1. Omprogrammering af Retrovirus udtrykker omprogrammeringsbeslutningerne Faktorer Humane fibroblaster dyrkes på fibroblast-medium (10% FBS i DMEM med Pen / Strep). En dag før infektion, varmeplader 1×10 5 humane fibroblaster i en brønd af en 6-brønds plade. Aspireres mediet at fjerne døde celler, og der tilsættes 2 ml frisk fibroblast medium. Tilsættes protaminsulfat i en endelig koncentration på 5 ug / ml. Forsigtigt tilsættes den passende mængde af hver GF…

Discussion

Ekspression af fire transkriptionsfaktorer omprogrammerer humane fibroblaster til IPSC'er. Mange forsøg på at generere humane IPSC'er med ikke-integrerende eller ikke-genetiske fremgangsmåder til at generere klinisk sikre IPSC'er. Hidtil har disse metoder udviser ekstremt lave effektivitet og kræver yderligere optimering for at forbedre reproducerbarheden 11-14. Retro-eller lentiviral metoder let bruges til at udlede og anvende IPSC'er til human di vitro sygdomsmodeller, …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret ved Yale School of Medicine and Child Health Research Award fra Charles Hood Foundation.

Materials

Name Concentration Company Catalogue Number
hESC medium
DMEM/F12 80% Invitrogen 11330057
Knockout Serum Replacer 20% Invitrogen 10828-028
L-Glutamine (200 mM) 2 mM Invitrogen 25030081
Nonessential Amino Acids (10 mM) 0.1 mM Invitrogen 11140050
β-Mercaptoethanol (14.3 M) or MTG 0.1 mM Invitrogen M-6250
bFGF-2 10 μg/ml 4 ng/ml GIBCO/BRL GF003AF
Penicillin/Streptomycin 1% Millipore 15140-122
Fiboblasts Medium
DMEM 90% Invitrogen 11965118
FBS 10% Invitrogen 10407028
Penicillin/Streptomycin 1% Millipore 15140-122

Table 1. Culture Medium

Name Concentration Company Catalogue Number
Antibodies
OCT4 1:500 Abcam Ab19857
SSEA3 1:100 Milipore MAB4303
SSEA4 1:100 BD Biosciences BD560218
Tra-1-81 1:100 BD Biosciences BD560173
Tra-1-60 1:100 BD Biosciences BD560174
NANOG 1:500 Abcam Ab21624
Alexa-Flur 488 1:1000 Invitrogen A11008
Alexa-Flur 555 1:1000 Invitrogen A21422
DAPI 1:5000 Invitrogen D1306
Plasmids
pMIG-OCT4   Addgene 17225
pMIG-SOX2   Addgene 17226
pMIG-KLF4   Addgene 17227
pMIG-MYC   Addgene 18119
Other Materials
Collagenase type IV 1mg/ml Invitrogen 17104019
Gelatin, Porcine 0.1% Sigma G 1890
Triton 0.2% Sigma X100-500ML
Paraformaldehyde 4% Sigma 47608
BSA 3% American Bioanalytical AB01800
MEF feeder cells   Millipore PMEF-N
Cell Lifter   Corning 3008
Equipment
Fluorescent microscopy: inverted microscope with GFP filter

Table 2. Reagents and equipment.

Riferimenti

  1. Murry, C. E., Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 132, 661-680 (2008).
  2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., Daley, G. Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  5. Park, I. H., Lerou, P. H., Zhao, R., Huo, H., Daley, G. Q. Generation of human-induced pluripotent stem cells. Nature Protocols. 3, 1180-1186 (2008).
  6. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., Daley, G. Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  7. Hotta, A., Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry. 105, 940-948 (2008).
  8. Matsui, T., Leung, D., Miyashita, H., Maksakova, I. A., Miyachi, H., Kimura, H., Tachibana, M., Lorincz, M. C., Shinkai, Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 464, 927-931 (2010).
  9. Wolf, D., Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 458, 1201-1204 (2009).
  10. Chan, E. M., Ratanasirintrawoot, S., Park, I. H., Manos, P. D., Loh, Y. H., Huo, H., Miller, J. D., Hartung, O., Rho, J., Ince, T. A. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27, 1033-1037 (2009).
  11. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, ., Thomson, J. A. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324, 797-801 (2009).
  12. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 4, 472-476 (2009).
  13. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7, 618-630 (2010).
  14. Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., Takada, N., Inoue, M., Hasegawa, M., Kawamata, S. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America. 108, 14234-14239 (2011).
  15. Wolf, D., Goff, S. P. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 131, 46-57 (2007).
  16. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., Daley, G. Q. Disease-specific induced pluripotent stem cells. Cell. 134, 877-886 (2008).
  17. Kim, K. Y., Hysolli, E., Park, I. H. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America. 108, 14169-14174 (2011).
check_url/it/3804?article_type=t

Play Video

Citazione di questo articolo
Kim, K., Hysolli, E., Park, I. Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP. J. Vis. Exp. (62), e3804, doi:10.3791/3804 (2012).

View Video