Summary

高效的小鼠胚胎干细胞分化成运动神经元

Published: June 09, 2012
doi:

Summary

我们开发了一个新的协议,以提高效率,在体外分化成运动神经元的小鼠胚胎干细胞。分化的胚胎干细胞获得运动神经元功能的神经元和运动神经元采用免疫组化技术标记表达证明。

Abstract

功能运动神经元分化成胚胎干细胞(ES细胞)的直接代表一个有前途的资源,研究疾病机理,筛选新的药物化合物,并制定,如脊肌萎缩症(SMA)和肌萎缩性侧索硬化症的运动神经元疾病的新疗法( ALS)的。目前许多协议使用维甲酸(RA)和刺猬(SHH)的组合分化成运动神经元1-4小鼠胚胎干细胞(MES)。然而,mES细胞分化成运动神经元的效率只达到中等成功。我们已经开发了一个两步分化协议5,显着提高目前建立的协议相比,分化效率。第一步是Noggin与成纤维细胞生长因子(FGFs)的加入,以加强neuralization过程。 Noggin与骨形态发生蛋白(BMP)受体拮抗剂和被牵连在神经诱导1ccording神经发生和结果形成前神经图案6默认模型。 FGF信号协同诱导神经组织的形成,促进后神经身份7-9 Noggin的行为。在这一步,mES细胞被引两天,以促进对神经谱系分化与Noggin的,碱性成纤维细胞生长因子,FGF-8。第二步是诱发运动神经元的规范。 Noggin与/ FGFs暴露mES细胞培养与RA和Shh的激动剂,理顺激动剂(凹陷),再过5天,以促进运动神经元生成。为了监测乱七八糟的分化成运动神经元,我们使用胚胎干细胞系,从转基因小鼠表达EGFP派生控制下运动神经元特异性启动子HB9 1。使用这个强大的协议,我们实现了51±0.8%的分化效率(N = 3,P <0.01,学生t-检验)5。从免疫的结果染色表明,绿色荧光蛋白+细胞表达运动神经元的特异性标志物,胰岛-1和胆碱乙酰转移酶(CHAT)。我们两步分化协议mES细胞分化成脊髓运动神经元提供了一条有效途径。

Protocol

1。步骤1:小鼠胚胎干细胞(MES)文化(定时:3天) 1。电镀主小鼠胚胎成纤维细胞(PMEF) 大衣4个100毫米组织培养皿中,用明胶PMEF粘附。加入8毫升0.1%的明胶溶液(干细胞),每道菜,并在室温下30分钟的孵育。 去除多余的明胶从菜肴。不要冲洗碗碟。 稀包含约一小瓶丝裂霉素C灭活PMEF(Millipore公司)。 5×10 6细胞(配方见表1),?…

Discussion

mES细胞的质量是最关键的参数为运动神经元的高效发电。 mES细胞必须培养,对PMEF防止自发分化。此外LIF的帮助mES细胞保持在未分化状态。由于MES细胞分裂每12至15小时,培养基变得枯竭迅速,必须每天更换。

高效活化Shh的途径是一个关键的参数,需要引起运动神经元的规范。 Shh蛋白(研发体系),Shh信号激动剂,如HH激动剂HhAg1.3(Curis公司),purmorphamine(Calbiochem公司),?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这手稿是致力于到文澜王博士的记忆2011年05月26日,通过了。我们感谢道格拉斯A·克尔博士慷慨提供的HBG3 MES在这项研究中使用的细胞。这项工作是由内穆尔,赠款(2 RR016472-10)根据国家研究资源中心(NCRR),和1 COBRE补助金从NCRR(5 P20的RR020173-05),以支持中心的INBRE方案儿童,美国特拉华州威尔明顿,在阿尔弗雷德一,杜邦医院的儿科研究。

Materials

Name of the reagent Company Catalogue number Final concentration
PMEF Millipore PMEF-H N.A.
       
PMEF medium      
DMEM Invitrogen 11965-118 N.A.
FBS Invitrogen 16140-071 10%
L-glutamine Invitrogen 25030-081 1%
Penicillin/streptomycin Invitrogen 15240-063 1%
       
mES medium      
DMEM StemCell Technologies 36250 N.A.
ES Cell-Qualified FBS Invitrogen 16141-079 15%
GlutaMax-I Invitrogen 35050-061 1%
Non-essential amino acids Invitrogen 11140-050 1%
Nucleosides Millipore ES-008-D 1%
β-mercaptoethanol Millipore ES-007-E 0.1 mM
Penicillin/streptomycin Millipore TMS-AB2-C 1%
LIF Millipore LIF2010 10 ng/ml
       
Neural Differentiation medium      
DMEM StemCell Technologies 36250 N.A.
ES Cult FBS StemCell Technologies 06905 15%
Non-essential amino acids Invitrogen 11140-050 1%
Mono-thio glycerol Sigma-Aldrich M-6145 1mM
Noggin Invitrogen PHC1506 50 ng/ml
FGF-8 Invitrogen PHG0274 20 ng/ml
bFGF Invitrogen PHG0024 20 ng/ml
       
MND medium (differentiation)      
ES-Cult Basal Medium-A StemCell Technologies 5801 N.A.
Knockout serum replacement Invitrogen 10828-028 10%
N-2 supplement Invitrogen 17502-048 1%
ITS Supplement-B StemCell Technologies 07155 1%
Ascorbic acid StemCell Technologies 07157 1%
Penicillin/streptomycin Millipore TMS-AB2-C 1%
GlutaMax-I Invitrogen 35050-061 1%
D-glucose Sigma-Aldrich G-8270 0.15% in d2H2O
Fibronectin StemCell Technologies 07159 5 μg/ml
Heparin Sigma-Aldrich H3149 20 μg/ml in d2H2O
β-mercaptoethanol Millipore ES-007-E 0.1 mM
Retinoic Acid Sigma-Aldrich R-2625 1 μM
SAG EMD Chemicals 566660 1 μM
       
MND medium (Motor Neuron culture)      
ES-Cult Basal Medium-A StemCell Technologies 5801 N.A.
Knockout serum replacement Invitrogen 10828-028 10%
N-2 supplement Invitrogen 17502-048 1%
ITS Supplement-B StemCell Technologies 07155 1%
Ascorbic acid StemCell Technologies 07157 1%
Penicillin/streptomycin Millipore TMS-AB2-C 1%
GlutaMax-I Invitrogen 35050-061 1%
D-glucose Sigma-Aldrich G-8270 0.15% in d2H2O
Fibronectin StemCell Technologies 07159 5 μg/ml
Heparin Sigma-Aldrich H3149 20 μg/ml in d2H2O
β-mercaptoethanol Millipore ES-007-E 0.1 mM
BDNF R&D Systems 248-BD-005/CF 10 ng/ml
CNTF R&D Systems 257-NY-010/CF 10 ng/ml
GDNF R&D Systems 212-GD-010/CF 10 ng/ml
NT-3 R&D Systems 267-N3-005/CF 10 ng/ml

N.A. = Non-applicable.

Table 1. PMEF and Media for mES cell culture or differentiation.

Name of the reagent Company Catalogue number Final Concentration
0.1% Gelatin StemCell Technologies 07903 N.A.
Poly-DL-ornithine Sigma-Aldrich P0421 0.1 mg/ml in d2H2O
Mouse laminin Millipore CC095 2 μg/ml in PBS
0.25% Trypsin/EDTA StemCell Technologies 07901 N.A.
Accumax Millipore SCR006 N.A.

N.A. = Non-applicable.

Table 2. Reagents for coating and dissociation.

Riferimenti

  1. Wichterle, H., Lieberam, I., Porter, J. A., Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell. 110, 385-397 (2002).
  2. Miles, G. B. Functional properties of motoneurons derived from mouse embryonic stem cells. J. Neurosci. 24, 7848-7858 (2004).
  3. Wichterle, H., Peljto, M. Differentiation of mouse embryonic stem cells to spinal motor neurons. Curr. Protoc. Stem Cell. Biol. Chapter 1, Unit 1H.1.1-Unit 1H.1.9 (2008).
  4. Kiris, E. Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Res. 6, 195-205 (2011).
  5. Wu, C. Y. Proteomic assessment of a cell model of spinal muscular atrophy. BMC Neurosci. 12, 25 (2011).
  6. McMahon, J. A. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438-1452 (1998).
  7. Storey, K. G. Early posterior neural tissue is induced by FGF in the chick embryo. Development. 125, 473-484 (1998).
  8. Launay, C., Fromentoux, V., Shi, D. L., Boucaut, J. C. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development. 122, 869-880 (1996).
  9. Sinha, S., Chen, J. K. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol. 2, 29-30 (2006).
  10. Chen, J. K., Taipale, J., Young, K. E., Maiti, T., Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. U.S.A. 99, 14071-14076 (2002).
  11. Lee, S. M., Danielian, P. S., Fritzsch, B., McMahon, A. P. Evidence that FGF8 signaling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development. 124, 959-969 (1997).
check_url/it/3813?article_type=t

Play Video

Citazione di questo articolo
Wu, C., Whye, D., Mason, R. W., Wang, W. Efficient Differentiation of Mouse Embryonic Stem Cells into Motor Neurons. J. Vis. Exp. (64), e3813, doi:10.3791/3813 (2012).

View Video