Summary

肺炎球菌による鼻腔内コロニー形成時の炎症反応の特徴

Published: January 17, 2014
doi:

Summary

肺炎球菌によるマウス鼻咽頭のコロニー形成および後の付着またはリクルートされた細胞の抽出について説明する。この技術は、ナアレスを通して鼻咽頭および流体の収集を洗い流し、その場所でのmRNA発現の差動細胞定量および分析を含む様々な読み出しに適応可能である。

Abstract

肺炎球菌による鼻咽頭コロニー形成は、肺または血流1に侵入する前提条件である。この生物は、鼻咽頭の粘膜表面を植民地化することができ、宿主の他の組織に侵入するために宿主防御を克服し、増殖し、最終的に克服することができる。通常下気道に感染を起こすと肺炎が生じる。あるいは、細菌は、高い死亡率2に関連する細菌血症を引き起こす血流に広がり得るか、またはそれ以外の場合は肺炎球菌性髄膜炎の発症に直接導く。鼻咽頭コロニー形成の運動学および免疫応答を理解することは、S.肺炎感染モデルの重要な側面である。

我々の鼻腔内コロニー形成のマウスモデルは、ヒトモデル3 から適応され、鼻咽頭4-7における宿主病原体応答の研究において複数の研究グループによって使用されている。モデルの最初の部分では 、S.肺炎 の臨床的分離株を使用して、ヒト成人のキャリッジイベントに似た自己制限細菌コロニー形成を確立する。本明細書で詳述される手順は、細菌接種の調製を含み、続いて鼻腔内投与経路を介して接種を送達することによってコロニー形成事象を確立する。居住マクロファージは、定常状態の間に鼻咽頭の主要な細胞型である。典型的には、未感染マウス8に存在するリンパ球はほとんど存在しないが、粘膜コロニー形成は、免疫応答とその後の宿主免疫細胞の動員をもたらす低位から高等級の炎症(細菌種および株の病原性に応じて)をもたらす。これらの細胞は、ナレスを通して気管内容物の洗浄によって単離され、感染の動態をよりよく理解するためにコロニー形成細菌の密度と相関することができる。

Protocol

開始する前に:特に明記されていない限り、すべてのステップはバイオハザードレベル2(BSL2)生物学的安全キャビネット(BSC)で行われます。実験開始前に、感染性細菌病原体の使用に関する適切なバイオハザード承認を、施設ガイドラインに従って取得していることを確認してください。また、事前に準備した手順を実施するために必要な材料と試薬をすべて用意してください。こ?…

Representative Results

図 1 は、プロトコルの主要な手順を要約した概略図を示しています。 図2〜3は 、本明細書に記載されたプロトコルに固有の微生物学的方法論の可視化を提供する。 図4 は、鼻腔内コロニー形成を行うマウスの適切な位置を示し、図 5 は典型的に S.肺炎株 P1547でコロニー形成されたマウスの体重の変化を示している。 図6〜7は</str…

Discussion

本研究では、 肺炎球菌 の臨床単離株を用いたマウスの鼻腔内浸着の詳細な方法と、その後の細菌に応答して鼻咽頭に採用された免疫細胞の単離および特徴付けについて明記した。我々は、細菌接種物を栄養豊富な培地で培養し、マウスの植民地化イベントを確立するために使用する方法を実証した。次に、鼻咽頭に採用された免疫細胞型の応答が、口蓋暴露、切開および鼻洗浄に続?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

著者らは、ペンシルベニア大学のジェフリー・ワイザー博士が 肺炎球菌の臨床株の贈り物に感謝したいと思います。この研究は、カナダ保健研究所によって資金提供されました。CVは、M.G.デグルートフェローシップとカナダ胸部協会からのフェローシップによって資金提供されました。この研究は、オンタリオ肺協会とカナダ保健研究所(CIHR)によって資金提供されました。ボウディッシュ研究所での研究は、マイケル・G・デグルート感染症研究センターとマクマスター免疫学研究センターによって部分的にサポートされています。

Materials

Name of Reagent/Material Company Catalog Number
Anti-Mouse Ly6C FITC BD Pharmingen 553104
Anti-Mouse Ly6G PE BD Pharmingen
Anti-Mouse CD45.1 eFluor 450 eBioscience 48-0453-82
Anti-Mouse F4/80 Antigen APC eBioscience 17-4801-82
Anti-Mouse CD11c PerCP-Cy5.5 eBioscience 45-0114-82
Anti-Mouse CD11b PE-Cy7 eBioscience 25-0112-82
Anti-Mouse CD3 Alexa Fluor 700 eBioscience 56-0032-82
Anti-Mouse CD4 eFluor 605NC eBioscience 93-0041-42
Intramedic Polyethylene Tubing – PE20 Becton Dickinson 427406
BD 1ml Syringe Becton Dickinson 309659
BD 26G3/8 Intradermal Bevel Becton Dickinson 305110
Buffer RLT Lysis Buffer Qiagen 79216
Difco Tryptic Soy Agar Becton Dickinson 236950
Defibrinated Sheep Blood PML Microbiologicals A0404
RNAqueous-Micro Kit Ambion AM1931
M-MuLV Reverse Transcriptase New England Biolabs M0253L
GoTaq qPCR Master Mix Promega A6001

Riferimenti

  1. Bogaert, D., de Groot, R., et al. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4, 144-154 (2004).
  2. Kadioglu, A., Weiser, J. N., et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6 (4), 288-301 (2008).
  3. McCool, T. L., Cate, T. R., et al. The immune response to pneumococcal proteins during experimental human carriage. J. Exp. Med. 195, 359-365 (2002).
  4. Nelson, A., Roche, A. M., et al. Capsule enhances pneumococcal colonisation by limiting mucus-mediated clearance. Infect. Immun. 75, 83-90 (2007).
  5. van Rossum, A., Lysenko, E., et al. Host and bacterial factors contributing to the clearance of colonisation by Streptococcus pneumoniae in a murine model. Infect. Immun. 73, 7718-7726 (2005).
  6. Barocchi, M. A., Ries, J., et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. U.S.A. 103, 2857-2862 (2006).
  7. Malley, R., Henneke, P., et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. U.S.A. 100, 1966-1971 (2003).
  8. McCool, T. L., Weiser, J. N. Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect. Immun. 72, 5807-5813 (2004).
  9. Gingles, N. A., et al. Role of genetic resistance in invasive pneumococcal infection: identification and study of susceptibility and resistance in inbred mouse strains. Infect. Immun. 69 (1), 426-434 (2001).
  10. Jeong, D., Jeong, E., et al. Difference in resistance to Streptococcus pneumoniae infection in mice. Lab Anim. Res. 27, 91-98 (2011).
  11. Wu, H. Y., Virolainen, A., et al. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23, 127-137 (1997).
  12. Southam, D. S., Dolovich, M., et al. Distribution of intranasal instillations in mice: effects of volume, time, body position. Lung Physiol. 282, 833-839 (2002).
  13. Miller, M. A., Stabenow, J. M., et al. Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia. PLoS ONE. 7 (2), (2012).
  14. Briles, D. E., Novak, L. Nasal Colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect. Immun. 73 (10), 6945-6951 (2005).
  15. Wu, H. -. Y., Virolainen, A., et al. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23, 127-137 (1997).
  16. Mo, Y., Wan, R., et al. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research. Methods Mol. Biol. 926, 99-112 (2012).
  17. Kuper, C. F., Koornstra, P. J., et al. The role of nasopharyngeal lymphoid tissue. Trends Immunol. 13, 219-224 (1992).
  18. Zhang, Q., Leong, S. C., et al. Characterisation of regulatory T cells in nasal associated lymphoid tissue in children: relationships with pneumococcal colonization. PLoS Pathog. 7, (2011).
  19. Briles, D. E., Novak, L., et al. Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect. Immun. 73, 6945-6951 (2005).
  20. Weinberger, D. M., Trzcinski, K., et al. Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog. 5, (2009).
  21. Bryant, W. P., J, , et al. Which Pneumococcal Serogroups Cause the Most Invasive Disease: Implications for Conjugate Vaccine Formulation and Use, Part I.. Clin. Infect. Dis. 30, 100-121 (2000).
  22. Hausdorff, W. P., Feikin, D. R., et al. Epidemiological differences among pneumococcal serotypes. Lancet Infect. Dis. 5, 83-93 (2005).
  23. Brueggemann, A., Griffiths, D., et al. Clonal Relationships between Invasive and Carriage Streptococcus pneumoniae and Serotype and Clone Specific Differences in Invasive Disease Potential. J. Infect. Dis. 187, 1424-1432 (2003).
  24. Mohler, J., Azoulay-Dupis, E., et al. Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumococcal pneumonia. Intensive Care Med. 29, 808-816 (2003).
  25. Wu, H. Y., Virolainen, A., Mathews, B., King, J., Russell, M. W., et al. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23, 127-137 (1997).
  26. Zhang, Z., Clarke, T. B., et al. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J. Clin. Invest. 119, 1899-1909 (2009).
  27. Parker, D., Martin, F. J., et al. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio. 2, (2011).
  28. Haya, D. L., Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389-1406 (2002).
  29. Nakamura, S., Favis, K. M., et al. Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J. Clin. Invest. 121, 3657-3665 (2011).
  30. Kim, J. O., Weiser, J. N. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177, 368-377 (1998).
  31. Roche, A. M., King, S. J., et al. Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice. Infect. Immun. 75, 2469-2475 (2007).
  32. Cohen, J. M., Khandavalli, S., Camberlein, E., Hyams, C., Baxendale, H. E., Brown, J. S. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-Cell responses to nasopharyngeal colonisation. PLoS One. 6 (10), (2011).
  33. Cohen, J. M., Khandavalli, S., Camberlein, E., Hyams, C., Baxendale, H. E., Brown, J. S. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-Cell responses to nasopharyngeal colonisation. PLoS One. 6 (10), (2011).
  34. Richards, L., Ferreira, D. M., Miyaji, E. N., Andrew, P. W., Kadioglu, A. The immunising effect of pneumococcal nasopharyngeal colonisation; protection against future colonisation and fatal invasive disease. Immunobiology. , 215-251 (2010).
  35. Lanie, J. A., Ng, W. L., et al. Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J. Bacteriol. 189, 38-51 (2007).
  36. Robertson, G. T., Ng, W. L., Foley, J., Gilmour, R., Winkler, M. E. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and. 184, 3508-3520 (2002).
  37. Orihuela, C. J., Gao, G., et al. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190, 1661-1669 (2004).
  38. Orihuela, C. J., Gao, G., et al. Organ-specific models of Streptococcus pneumoniae disease. Scand. J. Infect. D. 35, 647-652 (2003).
  39. Swirski, F. K., Nahrendorf, M., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 325, 612-616 (2009).
check_url/it/50490?article_type=t&slug=characterization-inflammatory-responses-during-intranasal

Play Video

Citazione di questo articolo
Puchta, A., Verschoor, C. P., Thurn, T., Bowdish, D. M. E. Characterization of Inflammatory Responses During Intranasal Colonization with Streptococcus pneumoniae. J. Vis. Exp. (83), e50490, doi:10.3791/50490 (2014).

View Video