Summary

蛛网膜下腔出血急性和后遗症的研究兔血分流型号:技术问题

Published: October 02, 2014
doi:

Summary

The experimental intracranial pressure-controlled blood shunt subarachnoid hemorrhage (SAH) model in the rabbit combines the standard procedures — subclavian artery cannulation and transcutaneous cisterna magna puncture, which enables close mimicking of human pathophysiological conditions after SAH. We present step-by-step instructions and discuss key surgical points for successful experimental SAH creation.

Abstract

早期脑损伤和迟发性脑血管痉挛既有助于蛛网膜下腔出血(SAH)后的不良后果。在模拟两个条件重现性和可控性的动物模型是目前少见。因此,需要以模仿从蛛网膜下腔出血导致人体的病理生理条件的新车型。

这份报告描述了兔子的血液分流蛛网膜下腔出血模型,使颅内压(ICP)控制技术的细微差别。体外分流放置在动脉系统和蛛网膜下腔,它使检查者无关SAH在一个封闭的颅骨之间。一步一步的程序指令和必要的设备描述,以及技术方面的考虑,生产模式以最小的死亡率和发病率。需要手术成功创造这一功能强大,简单和一致ICP备控制蛛网膜下腔出血动物模型的重要细节进行了描述。

Introduction

蛛网膜下腔出血(SAH)是最威胁生命的病理条件下,经常导致永久性神经损伤或死亡1之一。过去的研究主要集中于迟发性脑血管痉挛(DCVS)为蛛网膜下腔出血2相关的神经功能障碍的主要病因。但是,患者在治疗血管痉挛后,从患蛛网膜下腔出血的普遍较差的临床结果,导致了研究的重点扩展到包括早期脑损伤(EBI),蛛网膜下腔出血3后的效果。两个EBI和DCVS在SAH后造成不良的临床结果的意义更多的理解是更有效的治疗策略的发展是必不可少的。

截至目前,单双自体血液注射到小脑延髓池一直是蛛网膜下腔出血诱导的DCVS 2-6的研究的标准方法。尽管在以前的研究中常用的这种模式很可能不会重现蛛网膜下腔出血相关的病理变化主要诱发EBI 7。与此相反,腔内穿孔已知产生严重的急性病理生理改变部分地模仿EBI 7的症状。

这份报告描述蛛网膜下腔出血的一种新的动物模型,旨在使这两个EBI和DCVS的调查,从而使蛛网膜下腔出血引起的病理8-10更准确的描述随着所描述的技术,标准小脑延髓池模式适于通过连接动脉系统锁骨下动脉和小脑延髓池通过体外分流。的血流量,从而与兔子的生理及由动脉血和颅内压之间的压力梯度驱动。出血停止时脑压(ICP)等于舒张期血压和血液中的分流系统凝固。利用主机’的生理减少考官依赖SAH诱导,导致蛛网膜下腔出血比较一致的模型,可靠地产生两个EBI和DCVS表型3,8-10。

Protocol

三个月大的雌性新西兰兔体重2.5 – 3.5千克的用于该过程。按照卫生指引,国家研究院​​实验动物的管理和使用,并与瑞士伯尔尼(批准105#/ 13)的广的动物护理委员会的批准进行这项研究。所有的手术在无菌条件下,在临床研究部的实验外科研究所在伯尔尼大学医院在伯尔尼,瑞士被执行。兽医麻醉医师在手术和恢复整个监测的动物。 1,动物准备,定位和锁骨下动脉插?…

Representative Results

蛛网膜下腔出血的兔血分流模式本报告中所述生产的海马EBI( 图2A,B),基础皮层( 图2A,B)和脑血管( 图2C)的伤害,早在24小时后,显示出的特征血液分布( 图2D)8。此外,该模型触发中度至第三天严重度DCVS的SAH诱导( 图3)10后。死亡率为20 – 30%,因呼吸骤停或严重心动过缓急性蛛网膜下腔出血的时间?…

Discussion

分路模型产生病理类似于在急性SAH 3,8,10后人类观察。它已被提出,EBI可能会加剧,维持,甚至触发DCVS 12,因此该模型可在调查两种早期和晚期DCVS阶段,包括以下SAH EBI和DCVS相互作用帮助。特别的,可重复的体内 DCVS的监测技术包括DSA 13,计算机断层扫描血管造影14,和经颅多普勒15顷兔多readibly施加比在较小的实验室动物。除了让考官独立自发蛛网?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢劳里·冯·Melchner,伯尔尼大学医院的神经外科,伯尔尼,瑞士,校对和编辑稿件和Paskus耶利米,波士顿儿童医院,波士顿校对的初稿。我们赞赏动物护理,麻醉,并从丹尼尔·梅特勒,数字电压表,缪勒,数字电压表,丹尼尔Zalokar和Olgica Beslac,实验外科研究所临床研究部,伯尔尼大学,瑞士伯尔尼手术援助熟练的管理。我们感谢迈克尔·伦施,研究部主管护士,重症监护医学系,伯尔尼大学医院和伯尔尼大学,瑞士伯尔尼,对于生理参数的实时数据监控和后期处理。我们感谢艾丁Nevzati,卡尔·室井和莎乐美ERHARDT,其优秀的实验室技术和手术援助。

这项工作得到了强化班部支持ê病急救医学,伯尔尼大学医院和伯尔尼,瑞士伯尔尼,临床研究部,伯尔尼,瑞士伯尔尼大学的大学,并从Kantonsspital阿劳,阿劳,瑞士的研究基金。我们感谢爱思唯尔,对于图12转载的许可。

Materials

Name Company Catalog Number Comments/Description
Equipment
operation microscope Zeiss, Jena, Germany Zeiss, OPMI-MD surgical microscope
surgical equipment B. Braun, Germany forceps medical n°5, vessel sciccors 8cm, microclip 4mm
respirator Hugo Sachs
hair clipper 3M Surgical Clipper   Starter Kit 9667A
body warm plate FHC
blood gas analyzer Radiometer, Copenhagen, Denmark ABL 725
cardiac monitoring Camino Multi-Parameter Monitor, Integra, Plainsboro, NJ, US AP-05
software analysis BIOPAC Systems, Inc., Goleta, CA, USA Biopac MP100 and acqKnowledge software,version 3.8.1
software analysis ImagePro Discovery, MediaCybernetics, Silver Spring, MD, USA image-Pro Plus version 
angiography apparatus DFP 2000 A-Toshiba MIIXR0001EAA
ICP monitor Camino Laboratories, San Diego, CA, USA ICP monitor, Model 110-4B
blood flow monitor Oxford Optronix Ltd., Oxford, UK CAL KIT microsphere solution
laser-Doppler flowmetry fine needle probes  Oxford Optronix Ltd., Oxford, UK MNP110XP, 0.48 mm diameter
pressure tube B. Braun, Germay PE 1.0 mm × 2.0 mm
anesthesia monitor GE Medical Systems, Switzerland  Datex S5 Monitor
Material
20 G vascular catheter Smiths Medical Jelco i.v. catheter, REF 4057
5.5F three-lumen central venous catheter  Connectors, Tagelswangen, Switzerland silicone catheter STH-C040
22Gx40mm needle  Emergo Group Inc., Netherlands
high-speed microdrill Stryker, Solothurn, Switzerland 5400-15 
bone wax Ethicon, Johnson & Johnson,NJ, USA ETHW31G
bipolar forceps Aesculap, Inc., PA, US US349SP 
Ketamin Any generic product
Xylazine Any generic product
Buprenorphine Any generic product
Fentanyl Any generic product
transdermal fentanyl matrix patches  Any generic product
Lidocaine 1%  Any generic product
4% papaverin HCl  Any generic product
Neomycin sulfate  Research Organics Inc., OH, USA Any generic product
Povidone-iodine  Any generic product
0.9% sodium chloride Any generic product
Iopamidol  Abott Laboratories, IL, USA Any generic product
3-0 resorbable suture Ethicon Inc., USA VCP824G
5-0 non absorbable suture Ethicon Inc., USA 8618G
4-0 polyfilament sutures Ethicon Inc., USA VCP284G

Riferimenti

  1. Taylor, T. N., et al. Lifetime cost of stroke in the United States. Stroke; a journal of cerebral circulation. 27, 1459-1466 (1996).
  2. Kikkawa, Y., Kameda, K., Hirano, M., Sasaki, T., Hirano, K. Impaired feedback regulation of the receptor activity and the myofilament Ca2+ sensitivity contributes to increased vascular reactiveness after subarachnoid hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 30, 1637-1650 (2010).
  3. Marbacher, S., Fandino, J., Kitchen, N. D. Standard intracranial in vivo animal models of delayed cerebral vasospasm. British journal of neurosurgery. 24, 415-434 (2010).
  4. Marbacher, S., Neuschmelting, V., Graupner, T., Jakob, S. M., Fandino, J. Prevention of delayed cerebral vasospasm by continuous intrathecal infusion of glyceroltrinitrate and nimodipine in the rabbit model in vivo. Intensive care medicine. 34, 932-938 (2008).
  5. Zhou, M. L., et al. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. Journal of neuroscience. 159, 318-324 (2007).
  6. Vatter, H., et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery. 58, 1190-1197 (2006).
  7. Lee, J. Y., Sagher, O., Keep, R., Hua, Y., Xi, G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 65, 331-343 (2009).
  8. Marbacher, S., et al. A new rabbit model for the study of early brain injury after subarachnoid hemorrhage. Journal of neuroscience. 208, 138-145 (2012).
  9. Marbacher, S., et al. Outer skull landmark-based coordinates for measurement of cerebral blood flow and intracranial pressure in rabbits. Journal of neuroscience methods. 201, 322-326 (2011).
  10. Marbacher, S., et al. Extra-intracranial blood shunt mimicking aneurysm rupture: intracranial-pressure-controlled rabbit subarachnoid hemorrhage model. Journal of neuroscience. 191, 227-233 (2010).
  11. Sugawara, T., Ayer, R., Jadhav, V., Zhang, J. H. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 167, 327-334 (2008).
  12. Macdonald, R. L. Delayed neurological deterioration after subarachnoid haemorrhage. Nature reviews. Neurology. 10, 44-58 (2014).
  13. Zhang, Z. W., et al. Platelet-derived growth factor-induced severe and chronic vasoconstriction of cerebral arteries: proposed growth factor explanation of cerebral vasospasm. Neurosurgery. 66, 728-735 (2010).
  14. Laslo, A. M., Eastwood, J. D., Chen, F. X., Lee, T. Y. Dynamic CT perfusion imaging in subarachnoid hemorrhage-related vasospasm. AJNR. American journal of neuroradiology. 27, 624-631 (2006).
  15. Shao, Z., et al. Effects of tetramethylpyrazine on nitric oxide/cGMP signaling after cerebral vasospasm in rabbits. Brain research. 1361, 67-75 (2010).
  16. Bederson, J. B., Germano, I. M., Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke; a journal of cerebral circulation. 26, 1086-1091 (1995).
  17. Veelken, J. A., Laing, R. J., Jakubowski, J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke; a journal of cerebral circulation. 26, 1279-1283 (1995).
  18. Zakhartchenko, V., et al. Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals. Biology of reproduction. 84, 229-237 (2011).
  19. Capecchi, M. R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature reviews. Genetics. 6, 507-512 (2005).
  20. Flisikowska, T., et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PloS one. 6, e21045 (2011).
  21. Nakajima, M., et al. Effects of aging on cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke. 32, 620-628 (2001).
check_url/it/52132?article_type=t

Play Video

Citazione di questo articolo
Andereggen, L., Neuschmelting, V., von Gunten, M., Widmer, H. R., Takala, J., Jakob, S. M., Fandino, J., Marbacher, S. The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects. J. Vis. Exp. (92), e52132, doi:10.3791/52132 (2014).

View Video