Summary

一种有效的体外转位方法由转录调节的睡眠美容系统封装到一个集成缺陷的慢向量

Published: January 12, 2018
doi:

Summary

该协议描述了一种方法, 以实现稳定的基因的兴趣进入人类基因组由转录调控的睡美人系统。本文报道了有缺陷的慢载体的合成、人体细胞的体外转导和转细胞的分子检测。

Abstract

睡美人(SB) 转是一种病毒的集成系统, 具有有效的基因转移和功能基因组学的功效。为优化 SB 转机械, 采用转录调节过动转 (SB100X) 和 T2-based 转。通常, 转和转通过质粒转染而瞬时提供, SB100X 表达由本构子驱动。在这里, 我们描述了一个有效的方法, 将 sb 组件传递给那些对几种物理和化学转染方法有抵抗力的人体细胞, 控制 SB100X 表达, 并通过 “剪切和粘贴”, 稳定地整合一个感兴趣的基因 (印度)。机制.自1992年以来, 多动转的表达受到了系统的严格控制, 广泛用于控制基因表达。该基因的兴趣是两侧的反向重复 (IR) 的 T2 转。在 HEK293T 细胞中, 两个部件都被封装在集成缺陷的慢载体上。人类细胞, 无论是细胞系或人类组织的主要细胞, 都是在体外瞬时转与病毒载体。在添加强力霉素 (dox, 四环素模拟) 到培养基中, fine-tuning 的转表达的测量, 并导致长期的基因的兴趣在处理细胞基因组的结合。这种方法是有效的和适用于细胞线 (如, HeLa 细胞) 和原细胞 (如, 人原发角质形成), 从而代表了一个有价值的工具, 基因工程和治疗基因转移。

Introduction

多动 SB100X 转耦合到 T2-based 转已被用于临床前基因治疗应用1,2,3, 基因组修改4,5, 以及诱导多能干细胞 (iPSC) 重新编程6,7。典型地, SB 组分由质粒转染瞬时地提供, 并且一个强的本构子推动转的表示。然而, 尽管改进了新的转染方法, 但两组分系统的交付仍然是许多应用的挑战。因此, 新的交付议定书的发展引起了越来越多的兴趣。除转染方法为质粒8和 mRNA9, 病毒传递的基础上腺病毒10,11, 腺相关病毒 (AAV)12, 病毒性13, gammaretroviral14和慢向量15已在过去提出。值得注意的是, 选择系统必须保证在不集成病毒载体的情况下暂时交付 SB 部件。然而, 由于转的不可控 rehopping 的风险, 转的本构表达引起了安全问题。

因此, SB100X 的转录调控是第一个挑战。通过将原发育的最小巨细胞病毒 (CMV) 启动子替换为单纯疱疹 Virus-1 (HSV-1)16的 Timidine 激酶 (TK) 基因的最小启动子 (-81), 在SB100X cDNA (pTetOTKSB100X)。突变的反转四环素-反 rtTA2s-M217是在强本构子 (甘油促进剂, PGK) 的控制下, 在不同质粒 (pCCL-PGKrtTA2s-M2) 中克隆的。当添加到培养基中时, dox 绑定 rtTA2s-M2 调制器和系的新的启动子复合体或, 从而导致严格调节的 SB100X 表达式的归纳18

第二个主要的挑战是由几种物理和化学方法对人类原细胞的低效转染。为了有效地将转在人类细胞中抗转染, SB100X 和 rtTA2s-M2 表达式磁带被打包成两个集成缺陷慢向量 (IDLVs)19: IDLVTKSB 和 IDLVrtTA2sM2病毒载体瞬时产生作为第三代载体在 HEK293T 细胞20和型的糖蛋白 g 的 Vescicular 口炎病毒 (VSV-g), 它提供了广泛的感染范围。矢量粒子由离心和滴定 HIV-1 塞 p24 免疫。对于传感器细胞系和原细胞, 载体颗粒与凝聚复合, 在 dox 存在或缺失时与靶细胞孵育。用定量 rt-pcr (qRT-pcr)18测定了转细胞中 SB100X 表达的药物依赖性活化。

一旦春节调控的 SB100X 表达被证明, 将印度 (如绿色荧光蛋白, GFP) 转到靶细胞基因组中的分子事件, 由 Bak 和泰尔杰·密盖尔森21清楚地化。在 T2-transposon 国税局 (IDLVT2) 之间复制的一个表达式卡带的第三 IDLV 载体必须在上面提到的构造和包装。最后, 三 IDLV 载体可用于有效地传感器人体细胞 (如, 原发角质形成细胞)在体外, 并在强力霉素18的存在中整合印度。

Protocol

1. 质粒受雇 注: 质粒 pCCL-PGKrtTA2S-M2 提供了 Prof. Zappavigna (摩德纳大学和雷焦艾米利亚, 摩德纳, 意大利)。pCMVSB100X 质粒携带的多动转和 pT2/BH 转质粒的编码序列由 z 伊维西 (保罗, 兰, 德国) 和 Prof. z Izvak (最大汗分子医学中心, 柏林,德国)。 对于大肠杆菌(大肠杆菌) 中的所有克隆, 请遵循选择和限制酶程序的克隆策略或克隆片段的 PCR 扩增.注:?…

Representative Results

使用这里介绍的程序, 三 IDLV 载体运载被调控的 sb 组分 (SB100X, rtTA2S-M2 和 T2-GFP 转) 被包装并且用于高效率地运载和严密地调控 sb 系统在人的细胞。图 1A显示了一个用于 HeLa 细胞的体外转导的方案, 它是用两个 IDLV 向量的最佳剂量组合 (在表 2中报告) 来评估 SB 转的转录调节。用 qRT PCR (图 1B) 测量了 SB10…

Discussion

在这里, 我们描述一个广泛的方法, 以稳定地整合到目标细胞的基因组通过睡美人介导的转位。尽管 SB 系统的开发是为了提供一种病毒的基因组编辑方法, 但有效地交付集成机械 (转和 T2 转) 是强制性的。因此, 使用 sb 系统在几乎不 transfectable 的主要细胞, 病毒交付 sb 组分在最近几年被追求10,12,15。然而, 目前使用的病毒?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢 Prof. Zappavigna, 摩德纳大学和雷焦艾米利亚, 摩德纳, 意大利为我们提供了 pCCL-PGKrtTA2SM2 质粒。我们也承认 z 伊维西 (保罗 Ehlrich 研究所, 兰, 德国) 和 Prof. z Izvak (马克斯汗分子医学中心, 德国柏林) pCMVSB100X 和 pT2/BH 质粒。这项工作得到了黛布拉国际和意大利大学和研究部的支持。

Materials

Dulbecco’s modified Eagle’s medium with 4.5g/L glucose w/o L-Glutamine Lonza BE12-614F Cell culture medium.
HyClone Fetal Bovine Serum (U.S.), Characterized GE Healthcare Life Sciences SH30071.03 Serum used HEK293T cell culture for lentiviral particle production.
Penicillin 10.000 UI/ml Streptomycin 10.000 UI/ml Lonza DE17-602E Reagents for cell culture medium.
L-Glutamine 200mM Lonza BE17-605E Reagent for cell culture medium.
Sodium Chloride (NaCl) Sigma-Aldrich S7653 Reagent for HBS 2X preparation.
HEPES Buffer, 1M Stock in normal saline Lonza BE17-737E Reagent for HBS 2X preparation.
Disodium hydrogen phosphate dihydrate (Na2HPO4·2H2O), 99.5% Merck 106580 Reagent for HBS 2X preparation.
Hydrochloric acid – ACS reagent 37% (HCl) Sigma-Aldrich 320331 Reagent for HBS 2X preparation.
Sterile water for injection Fresenius Kabi Reagent for HBS 2X preparation.
0.45 µm PESS filter Whatman 10462100 Filters used to remove cell debris from viral supernatant.
Polyallomer Beckman tubes Beckman Coulter 326823 Tubes for concentrating IDLV vectors by ultracentrifugation.
PBS-1X w/o Ca, Mg Lonza BE17-516F Buffer for cell wash and lentiviral particle resuspension.
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153 (Optional) Buffer for lentiviral particle resuspension.
HIV-1 Gag p24 immunocapture kit Perkin Elmer NEK50001KT Kit for IDLV particle titration.
Polybrene Sigma-Aldrich 107689 Reagent to enhance transduction efficiency.
Trypsin (10X) 2.5% in HBSS w/o Ca, Mg GIBCO BE17-160E Reagent to detach HeLa cells (stock solution, to be diluted).
Ethylenediaminetetraacetic acid disodium salt (EDTA) 100938B AnalaR BDH Reagent for trypsin working solution preparation.
0.5% Trypsin-EDTA, no phenol red (10X) GIBCO 15400-054 Reagent to detach keratinocytes (stock solution, to be diluted).
Donor Bovine Serum, New Zealand Origin GIBCO 16030-074 Serum for Swiss mouse 3T3-J2 cell culture (feeder layer).
Ham’s F12 media GIBCO 21765 Medium for keratinocytes.
Fetal bovine serum Lonza DE14-801F Serum for HeLa cell culture medium.
Fetal Bovine Serum, qualified, Australia Origin GIBCO 10099-141 Serum for human primary keratinocyte culture medium.
Insulin from bovine pancreas Sigma-Aldrich I5500 Reagents for keratinocyte growth.
Adenine VWR 1152-25 Reagents for keratinocyte growth.
Hydrocortisone VWR 3867-1 Reagents for keratinocyte growth.
Cholera Toxin from Vibrio cholerae Sigma-Aldrich C8052 Reagents for keratinocyte growth.
Triiodothyronine Sigma-Aldrich T5516 Reagents for keratinocyte growth.
Human EGF Austral Biological GF-010-9 Reagents for keratinocyte growth.
Mouse monoclonal APC-conjugated Anti-Feeder antibody Miltenyi Biotech 130-096-099 To label feeder layer.
RNeasy Plus Mini Kit Qiagen 74134 RNA purification kit.
SuperScript III Reverse Transcriptase Life Technologies 18080051 Reverse transcriptase kit.
Deoxynucleotide Mix, 10 mM (dNTP) Sigma-Aldrich D7295 Reagent for semi-quantitative PCR.
UltraPure DNase/RNase-Free Distilled Water (any) Reagent for semi-quantitative PCR and for qRT-PCR.
GoTaq G2 Hot Start Polymerase Promega M740B Taq polymerase.
Agarose, for molecular biology Sigma-Aldrich A9539 Reagent for agarose gel electrophoresis.
UltraPure TBE Buffer, 10X Invitrogen 15581028 Reagent for agarose gel electrophoresis, to be dilute (1X) in ddH2O.
Ethidium bromide Sigma-Aldrich E1510 Reagent for agarose gel electrophoresis.
Doxycycline Sigma-Aldrich D-9891 drug to induce transposase expression in HeLa cells and in keratinocytes
TaqMan Universal PCR Master Mix Applied Biosystem 4304437 TaqMan Universal PCR Master Mix including primers and probe.
15mL High Clarity polypropylene Centrifuge Tube, Conical Bottom, with Dome Seal Screw Cap, Sterile Falcon Corning 352096 Tubes for cell collection and vector dilution preparation.
150 mm TC-Treated Cell Culture Dish with 20 mm Grid, Sterile Falcon Corning 353025 Cell culture dish for viral production.
6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate, with Lid, Individually Wrapped, Sterile Falcon Corning 353046 Cell culture plate for HeLa and human primary keratinocyte transduction.
Safe-Lock microcentrifuge tubes, volume 1.5 mL Eppendorf 0030 120.086 Tubes for dilution preparation.
Safe-Lock microcentrifuge tubes, volume 2 mL Eppendorf 0030 120.094 Tubes for dilution preparation.
0.2ml PCR Tubes with flat caps, RNase, DNase, DNA and PCR Inhibitor free (any) Tubes for semi-quantitative PCR.
MicroAmp Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL Applied Biosystem 4346906 96-well for qRT-PCR.
5mL Round Bottom Polystyrene Tube, without Cap BD Falcon 352052 Tubes for flow cytometry acquisition.
Disposable Serological Pipets, Polystyrene, Individually Wrapped, Sterile (different volumes) (any) Pipettes for sterile tissue culture applications.
Filter Tips, Sterile, and RNase, DNase, DNA and Pyrogen free (different volumes) (any) Filter tips for sterile tissue colture and molecular biology applications.
pH meter (any) Equipment for measurement of HBS 2X pH.
PCR Thermal cycler (any) Equipment for semi-quantitative PCR.
Agarose gel electrophoresis equipment (any) Equipment for agarose gel electrophoresis of semi-quantitative PCR.
BD FACS Canto II 2LSR 4/2 BD Flow cytometer.
7900HT Fast Real-Time PCR system Applied Biosystem 7900HT Equipment for qRT-PCR.
Benchtop centrifuges for efficient sample processing in cell culture applications, refrigerated, with microplate buckets. (any) Centrifuge for cell culture processing and spinoculation.
Optima L-90K Ultracentrifuge equipped with SW32TI rotor Beckman Coulter Ultracentrifuge for lentiviral particle production.
Equipment for cell culture and molecular biology laboratory (e.g., Class II laminar flow hood designed for work involving BSL2 materials, cell culture incubator,refrigerators and freezers (+4 °C, -20 °C, -80 °C), micropipettes and pipet-aid).
Protective laboratory coats, gloves, face protection in accordance with Institute rules and regulations, in particular for lentiviral particle production and transduction.

Riferimenti

  1. Mates, L., et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 41 (6), 753-761 (2009).
  2. Maiti, S. N., et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother. 36 (2), 112-123 (2013).
  3. Johnen, S., et al. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Invest Ophthalmol Vis Sci. 53 (8), 4787-4796 (2012).
  4. Koso, H., et al. Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells. Proc Natl Acad Sci U S A. 109 (44), E2998-E3007 (2012).
  5. Belay, E., et al. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells. 28 (10), 1760-1771 (2010).
  6. Grabundzija, I., et al. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res. 41 (3), 1829-1847 (2013).
  7. Kues, W. A., et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev. 22 (1), 124-135 (2013).
  8. Turchiano, G., et al. Genomic analysis of Sleeping Beauty transposon integration in human somatic cells. PLoS One. 9 (11), e112712 (2014).
  9. Jin, Z., et al. The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther. 18 (9), 849-856 (2011).
  10. Latella, M. C., et al. Correction of Recessive Dystrophic Epidermolysis Bullosa by Transposon-Mediated Integration of COL7A1 in Transplantable Patient-Derived Primary Keratinocytes. J Invest Dermatol. 137 (4), 836-844 (2017).
  11. Zhang, W., et al. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration. PLoS One. 8 (10), e75344 (2013).
  12. Zhang, W., et al. Hybrid adeno-associated viral vectors utilizing transposase-mediated somatic integration for stable transgene expression in human cells. PLoS One. 8 (10), e76771 (2013).
  13. Turunen, T. A., Laakkonen, J. P., Alasaarela, L., Airenne, K. J., Yla-Herttuala, S. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye. J Gene Med. 16 (1-2), 40-53 (2014).
  14. Galla, M., et al. Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res. 39 (16), 7147-7160 (2011).
  15. Moldt, B., et al. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol Ther. 19 (8), 1499-1510 (2011).
  16. Recchia, A., Perani, L., Sartori, D., Olgiati, C., Mavilio, F. Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol. Ther. 10, 660-670 (2004).
  17. Urlinger, S., et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A. 97 (14), 7963-7968 (2000).
  18. Cocchiarella, F., et al. Transcriptionally regulated and nontoxic delivery of the hyperactive Sleeping Beauty Transposase. Mol Ther Methods Clin Dev. 3, 16038 (2016).
  19. Yanez-Munoz, R. J., et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 12 (3), 348-353 (2006).
  20. Dull, T., et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 72 (11), 8463-8471 (1998).
  21. Bak, R. O., Mikkelsen, J. G. Mobilization of DNA transposable elements from lentiviral vectors. Mob Genet Elements. 1 (2), 139-144 (2011).
  22. Green, M. R., Sambrook, J. . Molecular Cloning: A laboratory Manual. , (2012).
  23. Dellambra, E., et al. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa. Hum Gene Ther. 9, 1359-1370 (1998).
check_url/it/56742?article_type=t

Play Video

Citazione di questo articolo
Benati, D., Cocchiarella, F., Recchia, A. An Efficient In Vitro Transposition Method by a Transcriptionally Regulated Sleeping Beauty System Packaged into an Integration Defective Lentiviral Vector. J. Vis. Exp. (131), e56742, doi:10.3791/56742 (2018).

View Video