Summary

创面愈合研究的前活体角膜器官培养模型

Published: February 15, 2019
doi:

Summary

介绍了一种适用于伤口愈合研究的体外角膜器官培养模型的方案。该模型系统可用于评估药物在有组织的3d 多细胞环境中促进再生愈合或药物毒性的效果。

Abstract

角膜已被广泛用作研究伤口愈合的模型系统。在二维 (2d) 和三维培养中产生和利用原代哺乳动物细胞的能力, 不仅产生了大量关于角膜生物学的信息, 而且还产生了大量关于伤口愈合、肌成纤维细胞生物学和一般疤痕的信息。.该方案的目标是一个检测系统, 用于定量肌成纤维细胞的发展, 其特点是疤痕。我们展示了一个角膜器官培养的体外模型使用猪眼。在这个前角膜切除术伤口, 角膜仍然在地球上受伤的圆形刀片称为树状。大约 1, 1 的角膜前部的塞子被切除, 包括上皮, 基底膜, 和前部的间质。受伤后, 角膜从地球上被切割, 安装在胶原蛋白基地, 并在补充血清游离培养基中培养两周, 并具有稳定的维生素 c, 以增加细胞增殖和细胞外基质分泌的居住性成纤维细胞。肌成纤维细胞在角膜愈合中的激活是明显的。该模型可用于检测创面闭合、肌成纤维细胞和纤维化标志物的发育以及毒理学研究。此外, 小分子抑制剂以及脂介导的 sirna 转染对基因敲除的影响可以在该系统中进行测试。

Introduction

由于受伤、外伤或感染而导致的角膜损伤会导致虚弱的不平衡和永久性视力下降。因此, 迫切需要确定可针对治疗干预的途径。目前的治疗选择有限, 主要包括角膜移植, 世界各地的病人都无法获得角膜移植。人 (图 1) 和动物角膜都可用于2d 和3d 细胞培养研究1,2。不适合移植的人体尸体角膜可以从眼库或中央组织库 (国家疾病研究相互交流 (ndri)) 获得, 动物眼睛可以从屠宰场获得。原代角膜上皮细胞、基质成纤维细胞以及最近的内皮细胞, 可以从这些组织中分离和培养, 用于伤口愈合和毒理学研究 3,4,5。除了了解致盲眼病的分子基础、组织的可获得性和培养原代细胞的能力外, 角膜也是重要的研究模型系统。角膜是理想的测试剂对疤痕的影响, 因为正常角膜是透明的, 某些类型的伤口造成不透明或纤维化疤痕 (回顾在 6)。几种体内角膜伤口愈合模型也被广泛用于疤痕研究1。利用较少的是体外角膜伤口愈合模型7,8 , 这里详细描述。该方法的目的是量化在三维多细胞角膜外模型系统中由纤维化的制造商所特有的疤痕结局。

角膜上皮伤, 不违反上皮基底膜通常关闭在 24-72 h9。受伤后不久, 上皮边缘的细胞开始扩散并迁移到上皮自由表面, 以重建上皮屏障功能。这一活动随后依次激活角膜基底细胞增殖, 并在稍后阶段, 前驱细胞位于外缘膜区, 以实现上皮细胞质量恢复 10,11.这些伤口往往愈合而没有疤痕。然而, 穿透基底膜进入间质的伤口往往会导致疤痕形成1。角膜间质损伤后, 间质由多个来源的细胞组成, 包括分化的常驻间质细胞以及骨髓源性纤维细胞 12,13,14。纤维化疤痕的特点是肌成纤维细胞在愈合伤口的持久性。这些病理性肌成纤维细胞表现出增加的粘附通过整合整合在局灶性粘连, 收缩α-平滑肌肌动蛋白 (α-sma) 应力纤维, 并局部激活细胞外基质 (ecm) 隔离后期转化的生长因子-β (tgfβ)。上皮细胞的分化, 称为上皮间充质转变 (emt), 也可能有助于瘢痕的形成 6.

细胞分化和损伤后细胞凋亡之间存在微妙的平衡。由于基底膜的断裂, 生长因子, 如血小板衍生生长因子 (pdgf) 和 tgfβ的生长因子, 如血小板衍生生长因子 (pdgf) 和 tgfβ, 由于眼泪和上皮沐浴的间质, 诱导肌成纤维细胞分化, 一个持续的自体循环 tgfβ, 和分泌不组织的纤维化 ecm15,16。肌成纤维细胞在愈合的伤口中的持续存在会促进角膜的雾霾和疤痕 (图 2)。然而, 在再生愈合的伤口, 虽然肌成纤维细胞的发展, 他们凋亡, 因此是缺席或明显减少的数量在愈合的组织 (回顾在参考6,10)。因此, 对纤维化疤痕的研究至少在一定程度上集中在靶向分子上, 以防止肌成纤维细胞过度发育或肌成纤维细胞持久性17,18。由于肌成纤维细胞的持久性在所有组织19中都有疤痕和纤维化疾病的特点, 角膜可能是研究纤维化的一般细胞机制的模型系统。

在我们的模型系统中, 角膜在地球上的时候被一个称为树状的圆柱形刀片击伤。人和猪角膜可以用6或7毫米的头孢菌伤;对于兔角膜是首选6毫米树状。猪角膜的大小与人角膜相似。因为猪角膜具有成本效益, 而且数量广泛, 因此通常用于器官培养。此外, 与人发生反应的抗体和 sirna 一直与猪7交叉反应。伤人后, 角膜被切割出地球与石灰完整, 并安装在琼脂胶原蛋白基地。角膜在无血清介质中培养, 并加入稳定的维生素 c, 以模拟成纤维细胞增殖和 ecm 沉积20。诱导肌成纤维细胞形成均不需要血清的添加和生长因子.在经过两周的培养后, 角膜定期固定和处理组织学。对于基因敲除, 或测试药物对伤口愈合的影响, 伤口可在伤后用 sirna 治疗, 伤后7人, 或可在培养基中添加可溶性剂, 分别为 8

Protocol

1. 器官文化 准备 准备琼脂解决方案, 如下所示。在一个小烧瓶中, 在 dmem-f12 中制备1% 琼脂和 1 mgml 牛胶原蛋白, 最高可达20毫升。在热盘上煮沸。将溶液放入50毫升的锥形管中。将管子放在热水澡中的热板上, 以防止溶液凝固。 根据材料表中提供的成分准备补充的无血清介质 (ssfm)。请注意:要准备的 ssfm 的必要数量取决于要处理的角?…

Representative Results

免疫组织化学是分析体外创面愈合实验成功的主要方法。图 4显示对照组织中的上皮和前间质 (图 4a, 4A)。受伤6小时后, 上皮无 (图 4c, 4C)。如预期的伤势后六天, 上皮已重新生长 (图 4e, 4E)。该组织对α-平滑肌肌动蛋白 (α-sma) 进行免疫抑制, 其表达…

Discussion

该协议描述了一个模型, 用于研究在自然分层三维环境中的伤口愈合。使用器官培养作为细胞培养和体内研究之间的中间体, 大大降低了成本, 也减少了活体动物的程序。其他3d 模型对该领域有很大的好处, 包括由原代人类角膜成纤维细胞 2这些相同的细胞嵌入在由动物衍生胶原蛋白31制成的凝胶中的自合成胶原蛋白凝胶.器官培养模型系统对于测试假定的治疗剂…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 nih-nei r01 ey024942、预防失明研究、州立医科大学无限制研究基金和狮子区20-y 的支持, 在显微镜核心进行了石蜡切片的显微镜和图像分析。组织学幻灯片的准备工作是在西奈山伊坎医学院的生物存储和病理核心进行的。

Materials

PBS Gibco 10-010-023
Pen Strep  MP Biomedicals 91670049
Bovine Collagen Solution Advance Biomatrix 5005
Pig eyes with lids attached  Pel-freeze, Arkansas N/A
6.0 mm trephine  Katena K28014
Surgical Blade  Personna 0.009
Small scissor Fisher 895110
Forceps Fisher 08953-F
Kim Wipes  Kimberly-Clark™ 34120 06-666
60 mm cell culture dishes  Falcon 08-772B
Supplemented Serum- Free media (SSFM) Add all of the following components to DMEM/F-12:  ITS, RPMI, Glutathione, L-Glutamine, MEM Non essential amino acids, MEM Sodium Pyruvate, ABAM, Gentamicin, Vitamin C. 
DMEM/F-12 Gibco 11330
ITS Liquid Media Supplement  Sigma I3146 100X
RPMI 1640 Vitamins Solution  Sigma R7256 100X
Glutathione Sigma G6013 Use at 1 µg/mL. Freeze aliquots; do not reuse after thawing.
1% L-glutamine solution  Gibco 25030-081 100X
MEM Non-essential amino acids solution  Gibco 11140 100X
MEM Sodium pyruvate solution  Gibco 11360 1 M Stocks (1000X) and freeze in single use aliquits.  Use from freezer each time media is made.
ABAM  Sigma A7292 100X
Gentamicin  Sigma 30-005-CR 200X
Vitamin C  Wako 070-0483 2-0-aD Glucopyranosyl-Ascorbic Acid. 1 mM stocks (1000x)
10% Iodine  Fisher Chemical SI86-1
Tissue Path Cassettes  Fisher 22-272416
Normal Goat Serum (NGS) Jackson Immuno Research 005-000-121 We use 3% NGS
Mounting Media  Thermo Scientific TA-030-FM
Safe Clear  Fisher 314-629
Ethyl Alcohol Ultra Pure 200CSGP 200 Proof, diluted at 100%, 70%, 50%) 
Sodium citrate  Fisher BP327 10mM, pH 6.4
Hematoxylin EMD Millipore M10742500
Bluing agent  Ricca Chemical Company 220-106
1% Triton X-100 Fisher 9002-93-1 Diluted in PBS
0.1% Tween 20  Fisher BP337 Diluted in PBS
3% Hydrogen Peroxide  Fisher H324
DAB Kit  Vector Laboratories SK-4100
Agar  Fisher  BP1423-500 Agar solution: prepare 1% agar and 1 mg/mL bovine collagen in DMEM-F12 up to 20 mL
Parafilm Bermis 13-374-12
Moist Chamber Use any chamber, cover it with wet Wipe Tissue and then put a layer of Parafilm over it.
Lipofectamine 2000
Qiagen RNAprotect Cell Reagent Qiagen  76104
Ambion PureLink RNA Mini Kit Thermo Scientific 12183018A
Anti-Fibronectin-EDA Antibody Sigma F6140 1:200 Diluted in  3% normal goat serum
Anti-alpha smooth muscle actin Antibody Sigma A2547 or C6198 (cy3 conjugated) 1:200 Diluted in 3% normal goat serum
Permafluor  Thermo Scientific TA-030-FM
DAPI  Invitrogen P36931
Gt anti -MS IgG (H+L) Secondary Antibody, HRP  Invitrogen 62-6520 1:100 diluted in 3% normal goat serum (for a-SMA, DAB staining)
Gt anti -MS IgM (H+L) Secondary Antibody, HRP  Thermo Scientific PA1-85999 1:100 diluted in 3% normal goat serum (for FN-EDA, DAB staining)
Gt anti -MS IgG (H+L) Secondary Antibody, Cy3  Jackson Immuno Research 115-165-146 1:200 Diluted in  3% normal goat serum (for a-SMA, Fluorescence staining)
 Zeiss Axioplan2  Zeiss Microscope
SPOT-2 Diagnostic Instruments, Sterling Heights, Michigan CCD camera

Riferimenti

  1. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental Eye Research. 121C, 178-193 (2014).
  2. Karamichos, D., Hutcheon, A. E., Zieske, J. D. Transforming growth factor-beta3 regulates assembly of a non-fibrotic matrix in a 3D corneal model. Journal of Tissue Engineering and Regenerative Medicine. 5 (8), e228-e238 (2011).
  3. Ronkko, S., Vellonen, K. S., Jarvinen, K., Toropainen, E., Urtti, A. Human corneal cell culture models for drug toxicity studies. Drug Delivery and Translational Research. 6 (6), 660-675 (2016).
  4. Bernstein, A. M., Twining, S. S., Warejcka, D. J., Tall, E., Masur, S. K. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Molecular Biology of the Cell. 18 (7), 2716-2727 (2007).
  5. Zhu, Y. T., et al. Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFkappaB pathway. Investigative Ophthalmology & Visual Science. 55 (3), 1509-1518 (2014).
  6. Shu, D. Y., Lovicu, F. J. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Progress in Retinal and Eye Research. 60, 44-65 (2017).
  7. Gillespie, S. R., Tedesco, L. J., Wang, L., Bernstein, A. M. The deubiquitylase USP10 regulates integrin beta1 and beta5 and fibrotic wound healing. Journal of Cell Science. 130 (20), 3481-3495 (2017).
  8. Yang, Y., et al. TRPV1 potentiates TGFbeta-induction of corneal myofibroblast development through an oxidative stress-mediated p38-SMAD2 signaling loop. PLoS One. 8 (10), e77300 (2013).
  9. Sta Iglesia, D. D., Stepp, M. A. Disruption of the basement membrane after corneal debridement. Investigative Ophthalmology & Visual Science. 41 (5), 1045-1053 (2000).
  10. Ljubimov, A. V., Saghizadeh, M. Progress in corneal wound healing. Progress in Retinal and Eye Research. 49, 17-45 (2015).
  11. Echevarria, T. J., Di Girolamo, N. Tissue-regenerating, vision-restoring corneal epithelial stem cells. Stem Cell Reviews and Reports. 7 (2), 256-268 (2011).
  12. Wilson, S. E., Mohan, R. R., Hong, J. W., Lee, J. S., Choi, R. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Archives of Ophthalmology. 119 (6), 889-896 (2001).
  13. Zieske, J. D., Guimaraes, S. R., Hutcheon, A. E. Kinetics of keratocyte proliferation in response to epithelial debridement. Experimental Eye Research. 72 (1), 33-39 (2001).
  14. Lassance, L., Marino, G. K., Medeiros, C. S., Thangavadivel, S., Wilson, S. E. Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury. Experimental Eye Research. 170, 177-187 (2018).
  15. Jester, J. V., Ho-Chang, J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Experimental Eye Research. 77 (5), 581-592 (2003).
  16. Gallego-Munoz, P., et al. Effects of TGFbeta1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair. Cytokine. 96, 94-101 (2017).
  17. Hinz, B., Gabbiani, G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biology Reports. 2, 78 (2010).
  18. Lagares, D., et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Science Translational Medicine. 9 (420), (2017).
  19. Hinz, B. Formation and function of the myofibroblast during tissue repair. Journal of Investigative Dermatology. 127 (3), 526-537 (2007).
  20. Karamichos, D., Guo, X. Q., Hutcheon, A. E., Zieske, J. D. Human corneal fibrosis: an in vitro model. Investigative Ophthalmology & Visual Science. 51 (3), 1382-1388 (2010).
  21. Henderson, N. C., et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nature Medicine. 19 (12), 1617-1624 (2013).
  22. Muro, A. F., et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 177 (6), 638-645 (2008).
  23. Shinde, A. V., et al. The alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biology. 41, 26-35 (2014).
  24. White, E. S., Muro, A. F. Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life. 63 (7), 538-546 (2011).
  25. Walraven, M., Hinz, B. Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biology. , (2018).
  26. Rosenbloom, J., Ren, S., Macarak, E. New frontiers in fibrotic disease therapies: The focus of the Joan and Joel Rosenbloom Center for Fibrotic Diseases at Thomas Jefferson University. Matrix Biology. 51, 14-25 (2016).
  27. Liu, J., et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 147 (1), 223-234 (2011).
  28. Ritchey, E. R., Code, K., Zelinka, C. P., Scott, M. A., Fischer, A. J. The chicken cornea as a model of wound healing and neuronal re-innervation. Molecular Vision. 17, 2440-2454 (2011).
  29. DelMonte, D. W., Kim, T. Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery. 37 (3), 588-598 (2011).
  30. Wilson, S. E., et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Experimental Eye Research. 62 (4), 325-327 (1996).
  31. Miron-Mendoza, M., Graham, E., Kivanany, P., Quiring, J., Petroll, W. M. The Role of Thrombin and Cell Contractility in Regulating Clustering and Collective Migration of Corneal Fibroblasts in Different ECM Environments. Investigative Ophthalmology & Visual Science. 56 (3), 2079-2090 (2015).
  32. Saghizadeh, M., et al. Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes. Brain Research Bulletin. 81 (2-3), 262-272 (2010).
  33. Saghizadeh, M., Kramerov, A. A., Yu, F. S., Castro, M. G., Ljubimov, A. V. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene. Investigative Ophthalmology & Visual Science. 51 (4), 1970-1980 (2010).
  34. Kramerov, A. A., Saghizadeh, M., Ljubimov, A. V. Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-cultured Corneas and Limbal Epithelial Cells. Journal of Visualized Experiments. (110), e54058 (2016).
  35. Cho, S. Y., Kim, M. S., Oh, S. J., Chung, S. K. Comparison of synthetic glues and 10-0 nylon in rabbit lamellar keratoplasty. Cornea. 32 (9), 1265-1268 (2013).
  36. Sharma, A., Mehan, M. M., Sinha, S., Cowden, J. W., Mohan, R. R. Trichostatin a inhibits corneal haze in vitro and in vivo. Investigative Ophthalmology & Visual Science. 50 (6), 2695-2701 (2009).
  37. Marino, G. K., Santhiago, M. R., Torricelli, A. A., Santhanam, A., Wilson, S. E. Corneal Molecular and Cellular Biology for the Refractive Surgeon: The Critical Role of the Epithelial Basement Membrane. Journal of Refractive Surgery. 32 (2), 118-125 (2016).
  38. Marino, G. K., Santhiago, M. R., Santhanam, A., Torricelli, A. A. M., Wilson, S. E. Regeneration of Defective Epithelial Basement Membrane and Restoration of Corneal Transparency After Photorefractive Keratectomy. Journal of Refractive Surgery. 33 (5), 337-346 (2017).
  39. Marino, G. K., et al. Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits. Experimental Eye Research. 161, 101-105 (2017).
  40. Janin-Manificat, H., et al. Development of ex vivo organ culture models to mimic human corneal scarring. Molecular Vision. 18, 2896-2908 (2012).
  41. Mohan, R. R., et al. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Experimental Eye Research. 76 (1), 71-87 (2003).
  42. Anumanthan, G., et al. KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. PLoS One. 13 (3), e0192145 (2018).
  43. Chandler, H. L., Colitz, C. M., Lu, P., Saville, W. J., Kusewitt, D. F. The role of the slug transcription factor in cell migration during corneal re-epithelialization in the dog. Experimental Eye Research. 84 (3), 400-411 (2007).

Play Video

Citazione di questo articolo
Castro, N., Gillespie, S. R., Bernstein, A. M. Ex Vivo Corneal Organ Culture Model for Wound Healing Studies. J. Vis. Exp. (144), e58562, doi:10.3791/58562 (2019).

View Video