Summary

使用微蒂特萝卜无线电标签进行多维欧大肠杆菌测量 (p) ppGpp,然后是薄层色谱

Published: June 04, 2019
doi:

Summary

微酸度皿中放射性标记细菌培养物的生长有助于高通量采样,从而允许对核苷酸池丰度进行多种技术和生物复制检测,包括 (p) ppGpp。可以监测生理压力来源引起的生长转变以及压力恢复的影响。

Abstract

(p)ppGpp核苷酸作为细菌的全球调节器,对各种物理和营养压力作出反应。它有一个快速的开始,在几秒钟内,这导致积累的水平接近或超过的GTP池的水平。应力反转场合迅速消失(p)ppGpp,通常半寿命不到一分钟。(p)ppGpp的存在导致细胞基因表达和代谢的改变,以对抗压力的破坏性影响。革兰氏阴性和革兰氏阳性细菌有不同的反应机制,但都取决于(p)ppGpp浓度。在任何情况下,都需要同时监测许多放射性标记细菌培养物的时间间隔,在临界应力过渡期间,时间间隔可能从 10 秒到数小时不等。此协议解决了这一技术难题。该方法利用温度和摇摇控制微酸盐培养箱,允许平行监测生长(吸收)和均匀磷酸盐放射性标记培养物的快速采样,通过PEI纤维素上的薄层色谱。分析的多重技术和生物复制需要少量样品。复杂的增长过渡,如二次增长和快速(p)ppGpp周转率可以通过这种方法进行定量评估。

Introduction

(p)ppGpp第二信使是一个全球调节器,调节大量基因的表达,包括用于合成核糖体和氨基酸1、2的基因。虽然最初发现在大肠杆菌3,(p)ppGpp可以发现在革兰氏阳性和革兰氏阴性细菌,以及在植物叶绿体4,5。对于大肠杆菌和其他革兰氏阴性细菌,(p)ppGpp在6、7、8两个不同位点与RNA聚合酶直接相互作用。在革兰氏阳性,(p)ppGpp抑制GTP丰度,这是由CodY,一种GTP结合蛋白与基因特异性DNA识别主题,导致调控9,10。(p)ppGpp积累,以回应饥饿的不同营养和压力条件,导致缓慢生长和调整基因表达,使适应压力11,12。

ppGpp累积的净量反映了合成酶和水酶活动之间的平衡。在大肠杆菌RelA是一种强合成酶和SpoT是双功能,具有强水酶和弱合成酶,其中每一种可能以不同的方式调节在应力依赖的方式。强RelA合成酶被激活时,通币指定的带电tRNA绑定到核糖体A位点时,它未能跟上蛋白质合成13,14,15的需求。弱孢子(p)ppGpp合成酶被激活,而强(p)ppGpp水解酶被抑制,以响应其他应力条件并通过其他机制。在某些情况下,ACP或Rsd等蛋白质可以结合到SpoT,这也改变了水解和合成16、17之间的平衡。在革兰氏阳性物中,合成和水解反映了单一RelA SpoT同源(RSH)蛋白之间更复杂的平衡,具有很强的合成和水解活性,以及较小的水酶和/或合成酶12。

(p)ppGpp核苷酸首次被发现为不寻常的32P标记点,出现在薄层色谱图(TLC)的自动放射图上,在氨基酸饥饿3引起的严格反应。更详细的标签协议已经审查18。此处描述的协议(图1)是对这些协议的修改,允许监测微小板上多个样品的生长。这有利于对(p)ppGpp丰度变化的多重生物和技术估计,最初是为研究二代移位19而开发的。带有32P 和 TLC 检测的 (p) ppGpp 标签也允许测量 (p) ppGpp 降解率。已开发替代方法来确定(p)ppGpp水平,如质谱、HPLC20、荧光化学传感器21、22和GFP基因融合到受ppGpp23影响的启动子。24.荧光化学传感器目前用途有限,因为结合ppGpp后光谱偏移小,以及ppGpp和ppGpp21之间的问题。该方法在体外检测(p)ppGpp是有效的,但在细胞提取物中却不能。涉及HPLC的方法已经改进了20个,但需要昂贵的设备,并且不能很好地适应高通通。最后,GFP融合可以估计ppGpp依赖激活或抑制,但不测量ppGpp本身。虽然每种替代方法都是有价值的,但它们需要昂贵的设备或大量的动手时间,否则它们不能接受多种动力学采样和后续处理。通过本文所述的方法,96 个样品可在大约 20 分钟(每板 18 个样本)内应用于 6 个 TLC 板,TLC 开发可在几个小时内解决,在几个小时或一夜之间获得定量数据,具体取决于标签强度。

Protocol

1. 媒体准备 对于 MOPS (3-(N-morpholino) 丙烷硫酸) 介质25,使用 1/10 体积的 10x MOPS 盐、1/100 体积的 100x 微量营养素溶液、3 mM 磷酸钠用于过夜培养物或 0.2 mM 磷酸钠进行 32 P 均匀标记, 0.2% 葡萄糖和 1 μg/mL 三明(维生素 B1)。如果需要,在40μg/mL下加入氨基酸。 对于 MOPS 盐,使用 400 mM MOPS、40 mM Tricine、0.1 mM FeSO 4、95 mM NH4Cl、2.6 mM K2SO4、…

Representative Results

在大肠杆菌K-12菌株中,添加血管素引起异于明的内源性饥饿,导致5分3秒后ppGpp水平增加。在MOPS中生长的含有除ILV以外的所有氨基酸的细胞,如图1所示,标有32P。 一旦贴上标签,加入6 μL的10毫克/mL-Valine(100微克/mL最终浓度),以产生无盐饥饿。样品在添加静脉曲明后0和5分钟进行。5分钟后(图3A),ppGpp和pppGpp水平增加了2倍和2.5倍。作为…

Discussion

实现细胞近乎均匀的标签是该协议的关键步骤。因此,使用定义的介质(如 MOPS 或 Tris 介质)对于允许携带磷酸盐浓度和特定活动的变化至关重要。不能使用磷酸盐缓冲介质,如 M9 或介质 A。大多数未定义的介质含有可变量的磷酸盐,如LB、胰锥酮和卡萨米诺酸。磷酸盐同位素33P是一种较弱的发射体,可以替代32 P。 然而,32 P的更高能量排放大大提高了检测灵敏度。必须强?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国国家卫生研究院尤尼斯·肯尼迪·施莱佛国家儿童健康与人类发展研究所(Eunice Kennedy Shriver)内部研究计划的支持。

Materials

(NH4)6(MO7)24 Fisher Scientifics A-674
Autoradiography film Denville scientific inc. E3218
CaCl2 J.T.Baker 1-1309
Chloramphenicol RPI C61000-25.0
CoCl2 Fisher Scientifics C-371
CuSO4 J.T.Baker 1843
FeSO4 Fisher Scientifics I-146
Formic acid Fisher Biotech BP1215-500
Glucose Macron 4912-12
H3BO4 Macron 2549-04
H3PO4 J.T.Baker 0260-02
K2SO4 Sigma P9458-250G
KH2PO4 Fisher Biotech BP362-500
L-Valine Sigma V-6504
MgCl2 Fisher Scientifics FL-06-0303
Microplate reader Synergy HT Biotek Synergy HT
MnCl2 Sigma M-9522
MOPS Sigma M1254-1KG
Na2HPO4 Mallinckrodt 7892
NaCl J.T.Baker 3624-01
NaH2PO4 Mallinckrodt 7917
NH4Cl Sigma A0171-500G
P-32 radionuclide, orthophosphoric acid in 1 mL water (5 mCi) Perkin Elmer NEX053005MC
Storage phosphor screen Kodak So230
Thermomixer Eppendorf 5382000015
Thiamine Sigma T-4625
TLC PEI Cellulose F Merk-Millipore 1.05579.0001
Tricine RPI T2400-500.0
Typhoon 9400 imager GE Healthcare
ZnSO4 Fisher Scientifics Z-68

Riferimenti

  1. Cashel, M., Gentry, D., Hernandez, V., Vinella, D. The stringent Response. Escherichia coli and Salmonella: Cellular and Molecular Biology. , 1458-1489 (1996).
  2. Magnusson, L. U., Farewell, A., Nyström, T. ppGpp: a global regulator in Escherichia coli. Trends in Microbiology. 13 (5), 236-242 (2005).
  3. Cashel, M., Gallant, J. Two Compounds implicated in the Function of the RC Gene of Escherichia coli. Nature. 221 (5183), 838-841 (1969).
  4. Braeken, K., Moris, M., Daniels, R., Vanderleyden, J., Michiels, J. New horizons for (p)ppGpp in bacterial and plant physiology. Trends in Microbiology. 14 (1), 45-54 (2006).
  5. Atkinson, G. C., Tenson, T., Hauryliuk, V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PloS One. 6 (8), e23479 (2011).
  6. Mechold, U., Potrykus, K., Murphy, H., Murakami, K. S., Cashel, M. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Research. 41 (12), 6175-6189 (2013).
  7. Molodtsov, V., et al. Allosteric Effector ppGpp Potentiates the Inhibition of Transcript Initiation by DksA. Molecular Cell. 69 (5), 828-839 (2018).
  8. Ross, W., Sanchez-Vazquez, P., Chen, A. Y. Y., Lee, J. -. H. H., Burgos, H. L. L., Gourse, R. L. L. ppGpp Binding to a Site at the RNAP-DksA Interface Accounts for Its Dramatic Effects on Transcription Initiation during the Stringent Response. Molecular Cell. 62 (6), 811-823 (2016).
  9. Kriel, A., et al. Direct Regulation of GTP Homeostasis by (p)ppGpp: A Critical Component of Viability and Stress Resistance. Molecular Cell. 48 (2), 231-241 (2012).
  10. Kriel, A., et al. GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes. Journal of Bacteriology. 196 (1), 189-201 (2014).
  11. Potrykus, K., Cashel, M. p)ppGpp: still magical. Annual Review of Microbiology. 62, 35-51 (2008).
  12. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T., Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews Microbiology. 13 (5), 298-309 (2015).
  13. Arenz, S., et al. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Research. 44 (13), 6471-6481 (2016).
  14. Loveland, A. B., et al. Ribosome•RelA structures reveal the mechanism of stringent response activation. eLife. 5, e17029 (2016).
  15. Brown, A., Fernández, I. S., Gordiyenko, Y., Ramakrishnan, V. Ribosome-dependent activation of stringent control. Nature. 534 (7606), 277-280 (2016).
  16. Battesti, A., Bouveret, E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Molecular Microbiology. 62 (4), 1048-1063 (2006).
  17. Lee, J. -. W., Park, Y. -. H., Seok, Y. -. J. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 115 (29), E6845-E6854 (2018).
  18. Cashel, M. Detection of (p)ppGpp Accumulation Patterns in Escherichia coli mutants. Molecular Microbiology Techniques. 3, 341-356 (1994).
  19. Fernández-Coll, L., Cashel, M. Contributions of SpoT Hydrolase, SpoT Synthetase, and RelA Synthetase to Carbon Source Diauxic Growth Transitions in Escherichia coli. Frontiers in Microbiology. , (2018).
  20. Varik, V., Oliveira, S. R. A., Hauryliuk, V., Tenson, T. HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. Scientific Reports. 7 (1), 11022 (2017).
  21. Rhee, H. -. W., et al. Selective Fluorescent Chemosensor for the Bacterial Alarmone (p)ppGpp. J. Am. Chem. Soc. 130 (3), 784-785 (2008).
  22. Wang, J., Chen, W., Liu, X., Wesdemiotis, C., Pang, Y. A Mononuclear Zinc Complex for Selective Detection of Diphosphate via Fluorescence ESIPT Turn-On. Journal of Materials Chemistry B. 2 (21), 3349-3354 (2014).
  23. Pokhilko, A. Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor. BMC Systems Biology. 11 (1), 106 (2017).
  24. Funabashi, H., Mie, M., Yanagida, Y., Kobatake, E., Aizawa, M. Fluorescent monitoring of cellular physiological status depending on the accumulation of ppGpp. Biotechnology Letters. 24 (4), 269-273 (2002).
  25. Neidhardt, F. C., Bloch, P. L., Smith, D. F. Culture medium for enterobacteria. Journal of Bacteriology. 119 (3), 736-747 (1974).
  26. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  27. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  28. Peselis, A., Serganov, A. ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands. Nature Chemical Biology. 14 (9), 887-894 (2018).
  29. Oki, T., Yoshimoto, A., Sato, S., Takamatsu, A. Purine nucleotide pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing pppApp and pppGpp. Biochimica et Biophysica Acta (BBA) – Enzymology. 410 (2), 262-272 (1975).
  30. Travers, A. A. ppApp alters transcriptional selectivity of Escherichia coli RNA polymerase. FEBS Letters. 94 (2), 345-348 (1978).
  31. Bruhn-Olszewska, B., et al. Structure-function comparisons of (p)ppApp vs (p)ppGpp for Escherichia coli RNA polymerase binding sites and for rrnB P1 promoter regulatory responses in vitro. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms. 1861 (8), 731-742 (2018).
check_url/it/59595?article_type=t

Play Video

Citazione di questo articolo
Fernández-Coll, L., Cashel, M. Using Microtiter Dish Radiolabeling for Multiple In Vivo Measurements Of Escherichia coli (p)ppGpp Followed by Thin Layer Chromatography. J. Vis. Exp. (148), e59595, doi:10.3791/59595 (2019).

View Video