Summary

使用改性非缝合铐技术的宫颈主动脉移植模型

Published: November 02, 2019
doi:

Summary

本文在宫颈鼠模型中采用非缝合袖口技术,提出了小鼠异位主动脉移植方案。该模型可用于研究慢性异体血管病(CAV)的基础病理学,并有助于评估新的治疗剂,以防止其形成。

Abstract

随着强大的免疫抑制方案的引入,在预防和治疗急性排斥发作方面可以取得明显进展。然而,在过去几十年中,只能观察到移植固体器官的长期结果略有改善。在此背景下,慢性异体血管病(CAV)仍然是心脏、肾脏和肺移植晚期器官衰竭的主要原因。

到目前为止,CAV发展的基本发病机制仍不清楚,这解释了为什么目前缺乏有效的治疗策略,并强调需要相关的实验模型,以便研究导致CAV 形成。以下方案描述了使用改良的非缝合铐技术的鼠异位宫颈主动脉移植模型。在此技术中,胸主动脉的一段插在右侧常见的胡萝卜动脉中。利用非缝合铐技术,可以建立易于学习和可重复的模型,最大限度地减少了缝合血管微麻醉剂的可能异质性。

Introduction

在过去的六十年里,固体器官移植已经从实验性程序发展到治疗终末期器官衰竭1的护理标准。由于抗菌剂的改进、外科技术和免疫抑制团的进步,固体器官移植的早期成功率在过去几十年中显著提高。

然而,长期移植存活率并没有以同样的方式显著改善3。CAV的发展是限制长期生存的主要因素4,5,6。这种病理学的特点是形成由平滑肌肉细胞组成的同心新突层,导致血管逐渐变窄和移植的固体器官连续发生麦芽灌注。在心脏移植接受者中,在移植后3年内,高达75%的患者可以诊断出CAV病变。

CAV的病理生理学尚未完全了解。它似乎与许多免疫学和非免疫因素有关,导致内皮损伤,随后的内皮活化和功能障碍8。到目前为止,对于预防CAV,没有因果治疗方案,强调需要一个可重复的小动物模型来研究CAV的形成和潜在的治疗。

使用鼠主动脉移植模型,CAV像病变可以看到移植后4周。这些病变主要由血管平滑肌细胞组成,因此类似于人类病理学。由于转基因和淘汰小鼠的种类繁多,在移植相关病理学中使用小鼠模型为确定新的治疗方案和了解其发展提供了独特的机会。然而,由于移植容器的直径小,小鼠模型的使用通常与长学习曲线和初始高并发症率9相关。随着非缝合袖口技术的引入,这个最具挑战性的手术部分可以促进和麻醉的直径保持恒定10,11。

Protocol

所有实验均根据德国动物福利法案(TierSchG)的指导方针进行。(AZ:55.2-1-54-2532.Vet_02-80-2015)。 1. 动物外壳 在实验中,使用体重为20-25克的雄性C57BL/6小鼠和C57BL/6小鼠作为受体动物,将BALB/c小鼠作为供体动物。 根据FELASA健康监测指南12,在无障碍无病原体设施中购买动物和房屋。 用浓缩的嵌套材料将小鼠放在标准模克隆笼子里。以12小…

Representative Results

在完全MHC错配移植模型中,移植后4周可以看到同心新心层(图2)。这一层主要由血管平滑肌细胞组成,如SM22(成熟血管平滑肌细胞的选择性标记物)的免疫组织染色。如前所述,这些血管平滑肌细胞是慢性异体血管病中看到的病变的病灶。为进一步分析,主动脉段应分割和染色的Elastica范吉森染色。在这里,新突层可以很容易地区分到内部弹性膜的弹性纤维,将图尼卡i…

Discussion

慢性异体血管病是心脏固体器官移植后晚期移植损失的主要原因,可能为肾和肺异体移植8。到目前为止,无法制定任何因果治疗方案,以防止CAV的形成。

CAV的病理生理学是多因素的,涉及免疫学和非免疫学方面16。在移植中使用啮齿动物模型对于理解固体器官移植中异体排斥过程的基本病理生理学至关重要,并有助于确定防止排斥的新方?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

Balb-c Mice (H2-d) Charles River Strain# 028 Donor animal
Bipolar cautery system ERBE ICC 50 / 20195-023 Bipolar cautery
C57BL/6J (H-2b) Charles River Strain# 027 Recipient animal
Halsey Needle Holders FST 12501-12 Needle Holder
Halsted-Mosquito Forceps AESCULAP BH111R Curved Clamp
Medical Polyimide Tubing Nordson MEDICAL 141-0031 Cuff-Material
Micro Serrefines FST 18055-04 Micro Vessel Clip
Micro-Adson Forceps (serrated) FST 11018-12 Standard Forceps
Micro-Serrefine Clamp Applying Forceps FST 18057-14 Clipapplicator
S&T Forceps – SuperGrip Tips (Angled 45°) S&T 00649-11 Fine Forceps
S&T Vessel Dilating Forceps – Angled 10° (Tip diameter 0.2 mm) S&T 00125-11 Vesseldilatator
Schott VisiLED Set Schott MC 1500 / S80-55 Light
Stereoscopic microscope ZEISS SteREO Discovery.V8 Microscope
Student Fine Scissors / Surgical Scissors – Sharp-Blunt FST 91460-11 / 14001-12 Standard Sissors
Vannas-Tübingen Spring Scissors (curved, 8.5 cm) FST 15004-08 Microsissors (curved)
Vannas-Tübingen Spring Scissors (straight, 8.5 cm) FST 15003-08 Microsissors (straight)

Riferimenti

  1. Rana, A., et al. Survival benefit of solid-organ transplant in the United States. JAMA Surgery. 150 (3), 252-259 (2015).
  2. Rana, A., Godfrey, E. L. Outcomes in Solid-Organ Transplantation: Success and Stagnation. Texas Heart Institute Journal. 46 (1), 75-76 (2019).
  3. Meier-Kriesche, H. U., Schold, J. D., Srinivas, T. R., Kaplan, B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. American Journal of Transplantation. 4 (3), 378-383 (2004).
  4. Bagnasco, S. M., Kraus, E. S. Intimal arteritis in renal allografts: new takes on an old lesion. Current Opinion in Organ Transplantation. 20 (3), 343-347 (2015).
  5. Hollis, I. B., Reed, B. N., Moranville, M. P. Medication management of cardiac allograft vasculopathy after heart transplantation. Pharmacotherapy. 35 (5), 489-501 (2015).
  6. Verleden, G. M., Raghu, G., Meyer, K. C., Glanville, A. R., Corris, P. A new classification system for chronic lung allograft dysfunction. The Journal of Heart and Lung Transplantation. 33 (2), 127-133 (2014).
  7. Ramzy, D., et al. Cardiac allograft vasculopathy: a review. Canadian Journal of Surgery. 48 (4), 319-327 (2005).
  8. Skoric, B., et al. Cardiac allograft vasculopathy: diagnosis, therapy, and prognosis. Croatian Medical Journal. 55 (6), 562-576 (2014).
  9. Koulack, J., et al. Development of a mouse aortic transplant model of chronic rejection. Microsurgery. 16 (2), 110-113 (1995).
  10. Rowinska, Z., et al. Using the Sleeve Technique in a Mouse Model of Aortic Transplantation – An Instructional Video. Journal of Visualized Experiments. (128), (2017).
  11. Dietrich, H., et al. Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule-1. Arteriosclerosis, Thrombosis, and Vascular Biology. 20 (2), 343-352 (2000).
  12. Mähler Convenor, M., et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Laboratory Animals. 48 (3), 178-192 (2014).
  13. Ollinger, R., et al. Blockade of p38 MAPK inhibits chronic allograft vasculopathy. Transplantation. 85 (2), 293-297 (2008).
  14. Thomas, M. N., et al. SDF-1/CXCR4/CXCR7 is pivotal for vascular smooth muscle cell proliferation and chronic allograft vasculopathy. Transplant International. 28 (12), 1426-1435 (2015).
  15. Ollinger, R., et al. Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation. Circulation. 112 (7), 1030-1039 (2005).
  16. Segura, A. M., Buja, L. M. Cardiac allograft vasculopathy: a complex multifactorial sequela of heart transplantation. Texas Heart Institute Journal. 40 (4), 400-402 (2013).
  17. McDaid, J., Scott, C. J., Kissenpfennig, A., Chen, H., Martins, P. N. The utility of animal models in developing immunosuppressive agents. European Journal of Pharmacology. 759, 295-302 (2015).
  18. Shi, C., Russell, M. E., Bianchi, C., Newell, J. B., Haber, E. Murine model of accelerated transplant arteriosclerosis. Circulation Research. 75 (2), 199-207 (1994).
  19. Koulack, J., et al. Importance of minor histocompatibility antigens in the development of allograft arteriosclerosis. Clinical Immunology and Immunopathology. 80 (3 Pt 1), 273-277 (1996).
  20. Maglione, M., et al. A novel technique for heterotopic vascularized pancreas transplantation in mice to assess ischemia reperfusion injury and graft pancreatitis. Surgery. 141 (5), 682-689 (2007).
  21. Oberhuber, R., et al. Murine cervical heart transplantation model using a modified cuff technique. Journal of Visualized Experiments. (92), e50753 (2014).
  22. Nakao, A., Ogino, Y., Tahara, K., Uchida, H., Kobayashi, E. Orthotopic intestinal transplantation using the cuff method in rats: a histopathological evaluation of the anastomosis. Microsurgery. 21 (1), 12-15 (2001).
check_url/it/59983?article_type=t

Play Video

Citazione di questo articolo
Ryll, M., Bucher, J., Drefs, M., Bösch, F., Kumaraswami, K., Schiergens, T., Niess, H., Schoenberg, M., Jacob, S., Rentsch, M., Guba, M., Werner, J., Andrassy, J., Thomas, M. N. Murine Cervical Aortic Transplantation Model using a Modified Non-Suture Cuff Technique. J. Vis. Exp. (153), e59983, doi:10.3791/59983 (2019).

View Video