Summary

使用打开的血管窗口和活体荧光显微镜测量小鼠耳蜗中的心室血流

Published: September 21, 2021
doi:

Summary

使用荧光示踪剂的开放式血管窗口方法为耳蜗血流(CoBF)测量提供了足够的分辨率。该方法有助于研究正常和病理条件下小鼠CoBF的结构和功能变化。

Abstract

声音的转导对代谢要求很高,侧壁微脉管系统的正常功能对于维持耳蜗电位、离子转运和体液平衡至关重要。据报道,不同形式的听力障碍涉及耳蜗中的异常微循环。由于缺乏可行的询问方法和难以进入内耳,研究人工耳血流(CoBF)病理如何影响听力功能具有挑战性。侧耳蜗壁上的打开血管窗口与荧光活体显微镜相结合,已被用于研究体内CoBF变化但主要用于豚鼠,最近才在小鼠中。本文和相关视频描述了用于可视化小鼠耳蜗血流的开放血管窗口方法。细节包括1)从小鼠制备荧光标记的血细胞悬液;2)在麻醉小鼠中构建用于活体显微镜检查的开放血管窗口,以及3)使用成像的离线记录测量血流速度和体积。该方法以视频格式呈现,以展示如何使用鼠标中的开窗方法研究正常和病理条件下耳蜗微循环的结构和功能变化。

Introduction

耳蜗外侧壁微循环(包括螺旋韧带和血管纹中的大部分毛细血管)的正常功能对于维持听力功能至关重要1。CoBF异常与许多内耳疾病的病理生理学有关,包括噪音引起的听力损失,耳水肿和老年性聋23456789活体CoBF的可视化将有助于更好地了解听力功能与耳蜗血管病理之间的联系。

尽管耳蜗在颞骨内的复杂性和位置无法直接可视化和测量CoBF,但已经开发了各种方法来评估CoBF,包括激光多普勒血流法(LDF)10,11,12,磁共振成像(MRI)13,荧光活体显微镜(FIVM)14,荧光显微内窥镜(FME)15内窥镜激光斑点对比成像(LSCI)16,以及基于将标记标记物和放射性标记微球注射到血液中的方法(光学微血管造影,OMAG)17181920然而,除了FIVM之外,这些方法都没有能够绝对实时跟踪体内CoBF的变化。FIVM与侧耳蜗壁中的容器窗口相结合,是一种已被各种实验室在不同实验条件下在豚鼠中使用和验证的方法142122

以异硫氰酸荧光素(FITC)-葡聚糖为造影剂,以DiO(3,3′-二十八烷基氧杂羰花青高氯酸盐,绿色)或Dil(1,1-二十八烷基-3,3,3,3-四甲基吲哚羰花青高氯酸盐,红色)为预标记血细胞、可视化血管和跟踪血流速度,成功建立了研究小鼠耳蜗微循环结构和功能变化的FIVM方法。在本研究中,已经描述了该方法的方案,用于在正常和病理条件下(例如噪声暴露后)对小鼠CoBF的变化进行成像和量化。该技术为研究人员提供了研究与血管纹中听力功能障碍和病理学相关的CoBF潜在机制所需的工具,特别是当与现成的转基因小鼠模型结合使用时。

Protocol

注意:这是一项非生存性手术。所有涉及使用动物的程序均由俄勒冈健康与科学大学的机构动物护理和使用委员会审查和批准(IACUC批准号:TR01_IP00000968)。 1.荧光标记血细胞的制备 用腹膜内(ip)注射氯胺酮/甲苯噻嗪麻醉液(5mL / kg,参见 材料表)麻醉供体小鼠(年龄~6周的雄性C57BL / 6J小鼠)。注意:此麻醉方案非常可靠,可维持全身血压。 …

Representative Results

在侧壁的耳蜗毛细血管手术暴露后(图1),通过打开的血管窗口对FITC右旋糖酐标记的血管中的Dil标记血细胞进行活体高分辨率荧光显微镜观察是可行的。图2A是在FIVM下拍摄的代表性图像,显示了小鼠耳蜗顶端-中转侧壁的毛细血管。这些血管的管腔通过与血浆混合的FITC-葡聚糖的荧光可见。分布在血管网络中的单独标记的血细?…

Discussion

本文展示了如何在FIVM系统下的开放式血管窗口制备中通过荧光团标记可视化小鼠模型耳蜗侧壁(和血管纹)中的毛细血管。小鼠模型被广泛使用并优选作为哺乳动物模型来研究人类健康和疾病。这里描述的协议是一种可行的方法,用于在FIVM系统下使用开放的血管窗口对小鼠侧壁(特别是在血管纹中)中的CoBF进行成像和研究该方法提供了足够的分辨率,用于使用荧光标记的血细胞作为示踪剂来确?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了NIH / NIDCD R21 DC016157(X.Shi),NIH / NIDCD R01 DC015781(X.Shi),NIH / NIDCD R01-DC010844(X.Shi)和俄勒冈健康与科学大学(OHSU)(X.Shi)的医学研究基金会的支持。

Materials

0.9% Sodium Chloride Hospira NDC 0409-1966-02 0.6 mL (for 1 mL)
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate Sigma Aldrich 468495 20 µM
3,3′-Dioctadecyloxacarbocyanine perchlorateDio (3,3′-Dioctadecyloxacarbocyanine perchlorate Sigma Aldrich D4292 20 µM
CODA Monitor system Kent scientific CODA Monitor, for monitoring blood pressure and heartbeat
Coverslip Fisher Scientific 12-542A
DC Temperature Controller FHC 40-90-8D
Fiji/ImageJ NIH Measurement of vessel diameter
FITC-dextran (2000 kDa) Sigma Aldrich FD2000s 40 mg/mL
Heparin Sodium Injection, USP MDV Mylan NDC 67457-374-12 5000 USP units/mL
Katathesia (100 mg/mL) Henry Schein NDC 11695-0702-1 0.2 mL (for 1 mL)
Microscope Objective Mitutoyo 378-823-5 Model: M Plan Apo NIR 10x
ORCA-ER Camera Hamamatsu Model: C4742-80-12AG
PBS Gibco 2085387
Xyzaine (100 mg/ml, 5x diluted for use ) Lloyd LPFL04821 0.2 mL (for 1 mL)
Zoom Stereo Microscope Olympus Model: SZ61, fluorescent microscope

Riferimenti

  1. Shi, X. Physiopathology of the cochlear microcirculation. Hearing Research. 282 (1), 10-24 (2011).
  2. Brown, J. N., Miller, J. M., Nuttall, A. L. Age-related changes in cochlear vascular conductance in mice. Hearing Research. 86 (1), 189-194 (1995).
  3. Gratton, M. A., Schmiedt, R. A., Schulte, B. A. Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis [corrected and republished article originallly printed in Hearing Research. Hearing Research. 94 (1-2), 181-190 (1996).
  4. Le Prell, C. G., Yamashita, D., Minami, S. B., Yamasoba, T., Miller, J. M. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hearing Research. 226 (1-2), 22-43 (2007).
  5. Miller, J., Ren, T. -. Y., Laurikainen, E., Golding-Wood, D., Nuttall, A. Hydrops-induced changes in cochlear blood flow. The Annals of otology, rhinology, and laryngology. 104 (6), 476-483 (1995).
  6. Miller, J. M., Ren, T. -. Y., Nuttall, A. L. Studies of inner ear blood flow in animals and human beings. Otolaryngology-Head and Neck Surgery. 112 (1), 101-113 (1995).
  7. Nakashima, T., et al. Disorders of cochlear blood flow. Brain Research Reviews. 43 (1), 17-28 (2003).
  8. Nuttall, A. L. Sound-induced cochlear ischemia/hypoxia as a mechanism of hearing loss. Noise and Health. 2 (5), 17 (1999).
  9. Trune, D. R., Nguyen-Huynh, A. Vascular pathophysiology in hearing disorders. Seminars in Hearing. , 242-250 (2012).
  10. Nakashima, T., Hattori, T., Sone, M., Sato, E., Tominaga, M. Blood flow measurements in the ears of patients receiving cochlear implants. The Annals of otology, rhinology, and laryngology. 111 (11), 998-1001 (2002).
  11. Ren, T., Brechtelsbauer, P. B., Miller, J. M., Nuttall, A. L. Cochlear blood flow measured by averaged laser Doppler flowmetry (ALDF). Hearing Research. 77 (1-2), 200-206 (1994).
  12. Goodwin, P. C., Miller, J. M., Dengerink, H. A., Wright, J. W., Axelsson, A. The laser Doppler: a non-invasive measure of cochlear blood flow. Acta Otolaryngologica. 98 (5-6), 403-412 (1984).
  13. Le Floc’h, J., et al. Markers of cochlear inflammation using MRI. Journal of Magnetic Resonance Imaging. 39 (1), 150-161 (2014).
  14. Axelsson, A., Nuttall, A. L., Miller, J. M. Observations of cochlear microcirculation using intravital microscopy. Acta Otolaryngologica. 109 (3-4), 263-270 (1990).
  15. Monfared, A., et al. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy. Otology & Neurotology. 27 (2), 144 (2006).
  16. Kong, T. H., Yu, S., Jung, B., Choi, J. S., Seo, Y. J. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system. PLoS One. 13 (2), 0191978 (2018).
  17. Angelborg, C., Hillerdal, M., Hultcrantz, E., Larsen, H. The microsphere method for studies of inner ear blood flow. ORL. 50 (6), 355-362 (1988).
  18. Choudhury, N., Chen, F., Shi, X., Nuttall, A. L., Wang, R. K. Volumetric imaging of blood flow within cochlea in gerbil in vivo. IEEE Journal of Selected Topics in Quantum Electronics. 16 (3), 524-529 (2010).
  19. Subhash, H. M., et al. Volumetric in vivo imaging of microvascular perfusion within the intact cochlea in mice using ultra-high sensitive optical microangiography. IEEE Transactions on Medical Imaging. 30 (2), 224-230 (2011).
  20. Reif, R., et al. Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system. PLoS One. 7 (12), 52041 (2012).
  21. Nuttall, A. L. Techniques for the observation and measurement of red blood cell velocity in vessels of the guinea pig cochlea. Hearing Research. 27 (2), 111-119 (1987).
  22. Nuttall, A. L. Cochlear blood flow: measurement techniques. American Journal of Otolaryngology. 9 (6), 291-301 (1988).
  23. Hanna, G., et al. Automated measurement of blood flow velocity and direction and hemoglobin oxygen saturation in the rat lung using intravital microscopy. American Journal of Physiology. Lung Cellular Molecular Physiology. 304 (2), 86-91 (2013).
  24. Narciso, M. G., Nasimuzzaman, M. Purification of platelets from mouse blood. Journal of Visualized Experiments. (147), e59803 (2019).
  25. Shi, X., et al. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow. Hearing Research. 313, 38-46 (2014).
  26. Lorenz, J. N. A practical guide to evaluating cardiovascular, renal, and pulmonary function in mice. American Journal of Physiology. Regulatory, Integrative, and Comparative Physiology. 282 (6), 1565-1582 (2002).
  27. Dai, M., Shi, X. Fibro-vascular coupling in the control of cochlear blood flow. PloS One. 6 (6), 20652 (2011).
  28. Shi, X. Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. American Journal of Pathology. 174 (5), 1692-1704 (2009).
  29. Hou, Z., et al. Platelet-derived growth factor subunit B signaling promotes pericyte migration in response to loud sound in the cochlear stria vascularis. Journal of the Association for Research in Otolaryngology. 19 (4), 363-379 (2018).
  30. Hultcrantz, E., Nuttall, A. L. Effect of hemodilution on cochlear blood flow measured by laser-Doppler flowmetry. American Journal of Otolaryngology. 8 (1), 16-22 (1987).
check_url/it/61857?article_type=t

Play Video

Citazione di questo articolo
Hou, Z., Zhang, Y., Neng, L., Zhang, J., Shi, X. Measurement of Strial Blood Flow in Mouse Cochlea Utilizing an Open Vessel-Window and Intravital Fluorescence Microscopy. J. Vis. Exp. (175), e61857, doi:10.3791/61857 (2021).

View Video