Summary

15N CPMG 放松分散,用于研究 μs-ms 时间尺度上的蛋白质符合性动力学

Published: April 19, 2021
doi:

Summary

在这里,详细描述了在实验室中实施的协议,通过解决方案 NMR 光谱学获取和分析 15个 N 放松分散配置文件。

Abstract

蛋白质构象动力学在调节酶催化、配体结合、异质和信号方面起着基础性作用,这些都是重要的生物过程。了解结构与动力学之间的平衡如何支配生物功能是现代结构生物学的一个新领域,并引发了多项技术和方法学的发展。其中,CPMG放松分散溶液NMR方法提供了关于在μs-ms时间尺度上发生的蛋白质相符合均衡的结构、动力学和热力学的独特原子分辨率信息。在这里,该研究提出了获取和分析15N放松分散实验的详细协议。例如,显示了用于分析细菌酶 I C 端域的 μs-ms 动力学的管道。

Introduction

卡尔-珀塞尔·梅布姆-吉尔(CPMG)放松分散(RD)实验用于常规基础,通过溶液NMR光谱学1、2、3、4、5来描述在μs-ms时间尺度上发生的象形平衡。与其他构象动力学调查方法相比, CPMG 技术在现代 NMR 光谱仪上相对容易实现,不需要专门的样品制备步骤(即结晶、样品冻结或对齐、和/或与荧光或参数标记共价),并提供关于交换过程的构象平衡返回结构、动能和热力学信息的综合特征。为了让 CPMG 实验报告构象平衡,必须适用两个条件:(i) 观察到的 NMR 自旋必须在进行构象交换(微状态)的状态中具有不同的化学变化:(ii) 交换必须在从 ~50μs 到 ~10ms 的时间尺度上发生。在这些条件下,观察到的横向放松率 Equation 1 () 是内在 R2(在没有 μs-ms 动态的情况下测量的 R2) Equation 2 和对横向放松 (Rex)的交换贡献的总和。通过减少构成脉冲序列CPMG块的180°脉冲之间的间距,可以逐步消除对R2研发贡献,并利用Bloch-McConnell理论对由此产生的RD曲线进行建模,以获得微态、每个微状态的微量人口和微状态之间的交换率(1),2,3之间的化学移位差异。

在15项N CPMG实验的文献中,报告了几个不同的脉冲序列和分析方案。本文介绍了在实验室中实施的协议。特别是,将采用关键步骤,准备NMR样本,建立和获取NMR实验,以及处理和分析NMR数据(图2)。为了便于将协议传输到其他实验室,脉冲程序、处理和分析脚本以及一个示例数据集作为补充文件提供,可在 (https://group.chem.iastate.edu/Venditti/downloads.html) 下载。所提供的脉冲序列在 CPMG 块中包含一个四步相周期,用于抑制偏移依赖物件 6,并编码用于获取多个交错实验。这些交错的实验有一个相同的放松期,但不同数量的重新聚焦脉冲,以实现不同的CPMG领域7。同样重要的是要注意,所述脉冲程序测量了NMR信号8的TROSY组件的15N R2。 总体而言,该议定书已成功应用于大中型蛋白质4、5、9、10的构象交换定性。对于较小的系统(<20 kDa),建议使用基于异核单量子一致性(HSQC)的脉冲序列11,12。

Protocol

1. 准备NMR样本 表达并净化2H,15N-实验室的感兴趣的蛋白质样本。注:虽然 15个 N 标记蛋白质样本可用于获取 CPMG RD 实验,但渗透(在可能的情况下)可显著提高获得数据的质量。文献13提供了生产渗透蛋白的协议。 缓冲区将纯化蛋白样品交换成脱气 NMR 缓冲器。 将 NMR 样本传输到 NMR 管中。注:NMR样本的浓度需要仔细优化,以…

Representative Results

此处描述的协议导致在 1 H- 15N TROSY频谱(图 3A)中为每个峰值获取 RD 配置文件。从收购的RD配置文件,可以估计交换贡献的15N横向放松每个骨干阿米德组(图3A,3B)。通过绘制被调查蛋白质的3D结构的R前图,可以识别在μs-ms时间尺度(图3C)上进行构造交换的结构区域。使用卡弗-里?…

Discussion

本手稿描述了在实验室中实施的协议,用于获取和分析15种 N RD 蛋白质数据。特别是,包括准备 NMR 样本、测量 NMR 数据和分析 RD 配置文件的关键步骤。下面讨论了有关研发实验的获取和分析的一些重要方面。然而,为了更深入地描述实验和数据分析,对原著文学的认真研究是强烈推荐的3、8、11、15、16。</s…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了来自NIGMS R35GM133488和罗伊·卡弗慈善信托基金到V.V.的资金支持。

Materials

Cryoprobe Bruker 5mm TCI 800 H-C/N-D cryoprobe Improve sensitivity
Deuterium Oxide Sigma Aldrich 756822-1 >99.8% pure, utilised in preparing NMR samples and deuterated cultures
Hand driven centrifuge United Scientific supply CENTFG1 Used to remove any air bubbles or residual liquid stuck on the walls of NMR tube.
High Field NMR spectrometer Bruker Bruker Avance II 600, Bruker Avance 800 acquisition of the NMR data
MATLAB MathWorks https://www.mathworks.com/products/get-matlab.html Modeling of the NMR data
NMR pasteur Pipette Corning Incorporation 7095D-NMR Pyrex glass pastuer pipette to transfer liquid sample in NMR tube
NMR tube Willmad Precision 535-PP-7 5mm thin wall 7'' cylinderical glass tube
NMRPipe Institute of Biosciences and Biotechnology research https://www.ibbr.umd.edu/nmrpipe/install.html NMR data processing
SPARKY University of California, San Francisco https://www.cgl.ucsf.edu/home/sparky/ Analysis of the NMR data
Tospin 3.2 (or newer) Bruker https://www.bruker.com/protected/en/services/software-downloads/nmr/pc/pc-topspin.html acquisition software

Riferimenti

  1. Anthis, N. J., Clore, G. M. Visualizing transient dark states by NMR spectroscopy. Quarterly Reviews of Biophysics. 48 (1), 35-116 (2015).
  2. Lisi, G. P., Loria, J. P. Solution NMR spectroscopy for the study of enzyme allostery. Chemical Reviews. 116 (11), 6323-6369 (2016).
  3. Mittermaier, A., Kay, L. E. New tools provide new insights in NMR studies of protein dynamics. Science. 312 (5771), 224-228 (2006).
  4. Venditti, V., Clore, G. M. Conformational selection and substrate binding regulate the monomer/dimer equilibrium of the C-terminal domain of Escherichia coli enzyme I. Journal of Biological Chemistry. 287 (32), 26989-26998 (2012).
  5. Venditti, V., et al. Large interdomain rearrangement triggered by suppression of micro- to millisecond dynamics in bacterial Enzyme I. Nature Communications. 6, 5960 (2015).
  6. Yip, G. N., Zuiderweg, E. R. A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment. Journal of Magnetic Resonance. 171 (1), 25-36 (2004).
  7. Mulder, F. A., Skrynnikov, N. R., Hon, B., Dahlquist, F. W., Kay, L. E. Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. Journal of the American Chemical Society. 123 (5), 967-975 (2001).
  8. Loria, J. P., Rance, M., Palmer, A. G. A TROSY CPMG sequence for characterizing chemical exchange in large proteins. Journal of Biomolecular NMR. 15 (2), 151-155 (1999).
  9. Dotas, R. R., et al. Hybrid thermophilic/mesophilic enzymes reveal a role for conformational disorder in regulation of bacterial Enzyme I. Journal of Molecular Biology. 432 (16), 4481-4498 (2020).
  10. Purslow, J. A., et al. Active site breathing of human Alkbh5 revealed by solution NMR and accelerated molecular dynamics. Biophysical Journal. 115, 1895-1905 (2018).
  11. Loria, J. P., Rance, M., Palmer, A. G. A relaxation-compensated Carr−Purcell−Meiboom−Gill sequence for characterizing chemical exchange by NMR Spectroscopy. Journal of the American Chemical Society. 121 (10), 2331-2332 (1999).
  12. Hansen, D. F., Vallurupalli, P., Kay, L. E. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. Journal of Physical Chemistry B. 112 (19), 5898-5904 (2008).
  13. Tugarinov, V., Kanelis, V., Kay, L. E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nature Protocols. 1 (2), 749-754 (2006).
  14. Niklasson, M., et al. Comprehensive analysis of NMR data using advanced line shape fitting. Journal of Biomolecular NMR. 69, 93-99 (2017).
  15. Palmer, A. G., Kroenke, C. D., Loria, J. P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods in Enzymology. 339, 204-238 (2001).
  16. Tollinger, M., Skrynnikov, N. R., Mulder, F. A., Forman-Kay, J. D., Kay, L. E. Slow dynamics in folded and unfolded states of an SH3 domain. Journal of the American Chemical Society. 123, 11341-11352 (2001).
  17. Carver, J. P., Richards, R. E. A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. Journal of Magnetic Resonance. 6 (1), 89-105 (1972).
  18. Egner, T. K., et al. Surface Contrast’ NMR Reveals Non-innocent Role of Support in Pd/CeO2 Catalyzed Phenol Hydrogenation. ChemCatChem. 12 (6), 4160-4166 (2020).
  19. Egner, T. K., Naik, P., Nelson, N. C., Slowing, I. I., Venditti, V. Mechanistic Insight into Nanoparticle Surface Adsorption by Solution NMR Spectroscopy in an Aqueous Gel. Angewandte Chemie (International Edition in English). 56, 9802-9806 (2017).
  20. Tugarinov, V., Libich, D. S., Meyer, V., Roche, J., Clore, G. M. The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angewandte Chemie (International Edition in English). 54, 11157-11161 (2015).
  21. Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V., Kay, L. E. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. Journal of the American Chemical Society. 126 (12), 3964-3973 (2004).
  22. Mayzel, M., Ahlner, A., Lundstrom, P., Orekhov, V. Y. Measurement of protein backbone (13)CO and (15)N relaxation dispersion at high resolution. Journal of Biomolecular NMR. 69, 1-12 (2017).
  23. Pritchard, R. B., Hansen, D. F. Characterising side chains in large proteins by protonless (13)C-detected NMR spectroscopy. Nature Communications. 10, 1747 (2019).

Play Video

Citazione di questo articolo
Singh, A., Purslow, J. A., Venditti, V. 15N CPMG Relaxation Dispersion for the Investigation of Protein Conformational Dynamics on the µs-ms Timescale. J. Vis. Exp. (170), e62395, doi:10.3791/62395 (2021).

View Video