Summary

绵羊眼玻璃体内注射

Published: July 05, 2022
doi:

Summary

在羊眼中进行玻璃体内注射,目的是将病毒介导的基因治疗传递到视网膜。

Abstract

有几种方法可以将治疗剂输送到视网膜,包括玻璃体内 (IVT)、视网膜下、脉络膜上、眼周或局部给药。IVT药物输送涉及注射到眼睛的玻璃体中,玻璃体是一种充满眼睛后房并保持眼球形状的凝胶状物质。虽然IVT途径的特异性目标性不如视网膜下递送,但它的侵入性要小得多,并且在临床环境中广泛用于一系列眼部疾病。

我们之前证明了玻璃体内递送腺相关病毒(AAV)介导的基因治疗产物(AAV9.CLN5)在绵羊中具有天然存在的CLN5形式的神经元蜡样脂褐质沉着症(NCL)。受影响的绵羊一只眼睛接受IVT基因治疗,另一只未经治疗的眼睛作为内部对照。治疗后15个月内,接受治疗的眼睛保持视网膜结构和功能,而未经治疗的眼睛在尸检时表现出进行性下降和严重萎缩。根据绵羊研究,CLN5基因治疗产品于2021年9月被美国食品药品监督管理局批准为候选研究新药(IND)。本文详细介绍了IVT将治疗性病毒载体递送到绵羊眼的手术方案。

Introduction

有几种方法可用于将治疗剂输送到视网膜,包括玻璃体内 (IVT)、视网膜下、脉络膜上、眼周或局部给药。每种给药途径都涉及克服诸如血液 – 视网膜屏障或内部和外部限制膜之类的屏障,并且根据所输送的药物和特定的视网膜靶标12具有不同的疗效率。

IVT药物输送涉及将注射到眼睛的玻璃体中,玻璃体是一种占据眼睛后房的凝胶状物质。玻璃体的主要功能是维持眼球的形状并保持眼组织(如晶状体和视网膜)就位。玻璃体液主要由水组成,少量胶原蛋白、透明质酸和其他非胶原蛋白3。IVT注射是一种简单而常见的程序,常规用于治疗各种眼部疾病,包括年龄相关性黄斑变性,糖尿病黄斑水肿,糖尿病视网膜病变,视网膜静脉阻塞和几种遗传性视网膜营养不良45

神经元蜡样脂褐素糖(NCL;巴顿病)是一组致命的溶酶体贮积病,会导致大脑和视网膜严重退化。目前有13种已知的NCL变异,由不同基因(CLN1-8CLN10-14)的突变引起,主要影响儿童,但发病年龄和疾病严重程度为6。NCL具有共同的进行性症状,包括认知和运动衰退,癫痫发作和视力丧失。NCL无法治愈;然而,脑定向酶替代疗法目前正在针对CLN2疾病78进行临床试验,AAV介导的基因疗法在临床前研究中显示出巨大的前景,CLN5基因治疗的临床试验预计将于2022年开始910

许多其他物种发展出天然存在的NCL形式,包括猫,狗,羊和牛。NCL的两种绵羊模型目前正在新西兰积极研究中:Borderdale绵羊的CLN5疾病模型和南汉普郡绵羊的CLN6疾病模型。受影响的绵羊表现出人类疾病的许多临床和病理特征,包括视网膜萎缩和视力丧失1011。尽管在患有CLN5疾病的绵羊中进行脑定向CLN5基因治疗可以预防或阻止脑萎缩和临床衰退,但接受治疗的绵羊仍然会失去视力9。这突出了治疗视网膜以保护视力和保持更好生活质量的必要性,从而建立了绵羊眼部基因治疗方案。

羊眼代表了人眼的良好模型,因为它在眼球尺寸、玻璃体体积和视网膜结构10、1213 方面相似。本文详细介绍了IVT将小体积(≤100μL)治疗性病毒载体输送到羊眼的手术方案。

Protocol

所有实验方案均由林肯大学动物伦理委员会批准,并符合美国国立卫生研究院关于在研究中照顾和使用动物的指南和新西兰动物福利法案(1999)。边境代尔绵羊在14 岁出生时被诊断出来,并在林肯大学的研究农场饲养。三只3个月大的纯合子(CLN5-/-)母羊接受了左眼单次IVT注射,未经治疗的右眼作为内部对照。将视网膜电图和病理学数据与历史健康和受影响的对照数据?…

Representative Results

该研究小组先前已证明 IVT 递送 CLN5 基因治疗载体在减轻 CLN5 NCL 绵羊视网膜功能障碍和变性的功效15.受影响的绵羊接受单次 100 μL IVT 注射包装在 AAV 血清型 9 (AAV9) 载体 (AAV9.CLN5)进入一只眼睛,对侧眼睛作为未经治疗的内部对照。从注射年龄(3个月)到终末期疾病(18个月)每月评估视力。对治疗和未治疗的眼睛以及年龄匹配的健康和受CLN5影响的对照组进行了视网膜组织学…

Discussion

玻璃体内注射是人类眼科中最常见的外科手术之一,已被证明可有效将AAV介导的基因疗法输送到绵羊的视网膜。我们之前已经证明了AAV9的功效。CLN5基因治疗在玻璃体内使用CLN5 NCL15减轻绵羊视网膜功能障碍和变性。希望将这种给药途径转化为人类NCL患者也将证明是有益的。

小容量IVT注射到羊眼的方案相对简单和非侵入性,易于重现,并且易于非专家学习。?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者要感谢Steve Heap博士(BVSc,CertVOphthal)在建立该协议和执行Murray等人描述的注射方面的帮助15。作者还感谢来自CureKids New Zealand,Canterbury医学研究基金会,Neurogene Inc和Batten Disease Support and Research Association的资助。

Materials

1 mL low dead-space safety syringe with permanently attached 0.5 inch needle Fisher Scientific, Auckland, New Zealand 05-561-28 Covidien Monoject Tuberculin Safety syringe or similar
1.5 mL microcentrifuge tube Sigma Aldrich HS4323 Autoclave tubes to sterilise prior to use
Anesthesia machine with gas bench and monitor  Hyvet Anesthesia, Christchurch, New Zealand
Antibiotic eye drops  Teva Pharma Ltd, Auckland, New Zealand Commercial name: Chlorafast (0.5% chloramphenicol)
BrightMount plus anti-fade mounting medium Abcam, Cambridge, United Kingdom ab103748
DAPI (4′ ,6-diamidino-2-phenylindole dihydrochloride) Sigma Aldrich, St. Louis, Missouri, United States 10236276001
Diazepam sedative Ilium, Troy Laboratories Pty Ltd, Tauranga, New Zealand 5 mg/mL
Endotracheal tubes Flexicare Medical Ltd, Mountain Ash, United Kingdom Standard, cuffed. Sizes 7, 7.5, or 8 depending on sheep size
Eye speculum Capes Medical Ltd, Tauranga, New Zealand KP151/14 Nopa Barraquer-Colibri (10 mm)
Fenestrated surgical drape Amtech Medical Ltd, Whanganui, New Zealand DI583 Or similar 
Filter Tips Interlab, Auckland, New Zealand 10, 200, and 1,000 µL 
Formaldehyde solution (37%) Fisher Scientific, Auckland, New Zealand AJA809-2.5PL Make up to 10% in distilled water with 0.9% NaCl
Goat anti-rabbit Alexa Fluor 594 Invitrogen Carlsbad, CA, USA  A-11012 Use at a dilution of 1:500
Isoflurane anesthetic Attane, Bayer Animal Health, Auckland, New Zealand
Ketamine HCl anesthetic/analgesic PhoenixPharm Distributors Ltd, Auckland, New Zealand 100 mg/mL
Laryngoscope (veterinary) KaWe Medical, Denmark Miller C blade, size 2
Needles  Capes Medical Ltd, Tauranga, New Zealand 302025 BD Hypodermic Needles, or similar
Non-steroidal anti-inflammatory Boehringer Ingelheim (NZ) Ltd, Auckland, New Zealand 49402/008 Commercial name: Metacam 20 (20 mg/mL meloxicam)
Non-toothed forceps Capes Medical Ltd, Tauranga, New Zealand AB864/16 Or similar 
Non-toothed hemostat Capes Medical Ltd, Tauranga, New Zealand AA150/12 Or similar 
Normal goat serum Thermo Fisher Scientific, Christchurch, New Zealand 16210072
Oxygen (medical) BOC Gas, Christchurch, New Zealand D2 cylinder, gas code 180
Phosphate buffered saline  Thermo Fisher Scientific, Christchurch, New Zealand 10010023 Sterile, filtered
Povidone-Iodine solution Capes Medical Ltd, Tauranga, New Zealand 005835 Commercial name: Betadine (10% povidone-iodine)
Rabbit anti-cow glial fibrillary acidic protein (GFAP) Dako, Glostrup, Denmark Z0334 Use at a dilution of 1:2,500
Self-complementary adeno-associated virus serotype 9, containing the chicken beta action (CBh) promoter and codon-optimized ovine CLN5 University of North Carolina Vector Core, NC, USA. scAAV9/CBh-oCLN5opt
Sodium Chloride 0.9% IV Solution Capes Medical Ltd, Tauranga, New Zealand AHB1322 Commercial name: Saline solution 
Subcutaneous antibiotics Intervet Schering Plough Animal Health Ltd, Wellington, New Zealand Commercial name: Duplocillin LA (150,000 IU/mL procaine penicillin and 115,000 IU/mL benzathine penicillin)
Surgical sharp blunt curved scissors  Capes Medical Ltd, Tauranga, New Zealand SSSHBLC130
Terumo Syringe Luer Lock Amtech Medical Ltd, Whanganui, New Zealand SH159/SH160 Sterile syringes; 10 mL for drawing up induction drugs, 20 mL for drawing up saline
Virkon Disinfectant Powder EBOS Group Ltd, Christchurch, NZ 28461115

Riferimenti

  1. Himawan, E., et al. Drug delivery to retinal photoreceptors. Drug Discovery Today. 24 (8), 1637-1643 (2019).
  2. Murray, S. J., Mitchell, N. L. Ocular therapies for neuronal ceroid lipofuscinoses: More than meets the eye. Neural Regeneration Research. 17 (8), 1755-1756 (2022).
  3. Bishop, P. N. Structural macromolecules and supramolecular organisation of the vitreous gel. Progress in Retinal and Eye Research. 19 (3), 323-344 (2000).
  4. Grzybowski, A., et al. update on intravitreal injections: Euretina expert consensus recommendations. Ophthalmologica. 239 (4), 181-193 (2018).
  5. Pavlou, M., et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Molecular Medicine. 13 (4), 13392 (2021).
  6. Kousi, M., Lehesjoki, A. -. E., Mole, S. E. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Human Mutation. 33 (1), 42-63 (2012).
  7. Wibbeler, E., et al. Cerliponase alfa for the treatment of atypical phenotypes of CLN2 disease: A retrospective case series. Journal of Child Neurology. 36 (6), 468-474 (2021).
  8. Schulz, A., et al. Study of intraventricular cerliponase alfa for CLN2 disease. The New England Journal of Medicine. 378 (20), 1898-1907 (2018).
  9. Mitchell, N. L., et al. Longitudinal in vivo monitoring of the CNS demonstrates the efficacy of gene therapy in a sheep model of CLN5 Batten disease. Molecular Therapy. 26 (10), 2366-2378 (2018).
  10. Murray, S. J., Mitchell, N. L. Natural history of retinal degeneration in ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinoses. Scientific Reports. 12 (1), 3670 (2022).
  11. Russell, K. N., Mitchell, N. L., Wellby, M. P., Barrell, G. K., Palmer, D. N. Electroretinography data from ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinoses. Data in Brief. 37, 107188 (2021).
  12. Shafiee, A., McIntire, G. L., Sidebotham, L. C., Ward, K. W. Experimental determination and allometric prediction of vitreous volume, and retina and lens weights in Göttingen minipigs. Veterinary Ophthalmology. 11 (3), 193-196 (2008).
  13. Shinozaki, A., Hosaka, Y., Imagawa, T., Uehara, M. Topography of ganglion cells and photoreceptors in the sheep retina. The Journal of Comparative Neurology. 518 (12), 2305-2315 (2010).
  14. Frugier, T., et al. A new large animal model of CLN5 neuronal ceroid lipofuscinosis in Borderdale sheep is caused by a nucleotide substitution at a consensus splice site (c.571+1G>A) leading to excision of exon 3. Neurobiology of Disease. 29 (2), 306-315 (2008).
  15. Murray, S. J., et al. Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease. Experimental Eye Research. 207, 108600 (2021).
  16. Ross, M., et al. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Therapy. , (2021).
  17. Boyd, R. F., et al. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs. Gene Therapy. 23 (2), 223-230 (2016).
  18. Dalkara, D., et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Science Translational Medicine. 5 (189), (2013).
  19. Gearhart, P. M., Gearhart, C., Thompson, D. A., Petersen-Jones, S. M. Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. Archives of Ophthalmology. 128 (11), 1442-1448 (2010).
  20. Ross, M., et al. Evaluation of photoreceptor transduction efficacy of capsid-modified adeno-associated viral vectors following intravitreal and subretinal delivery in sheep. Human Gene Therapy. 31 (13-14), 719-729 (2020).
  21. Kotterman, M. A., et al. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Therapy. 22 (2), 116-126 (2015).
  22. Whitehead, M., Osborne, A., Yu-Wai-Man, P., Martin, K. Humoral immune responses to AAV gene therapy in the ocular compartment. Biological Reviews. 96 (4), 1616-1644 (2021).
  23. Yun, C., Oh, J., Hwang, S. -. Y., Kim, S. -. W., Huh, K. Subconjunctival hemorrhage after intravitreal injection of anti-vascular endothelial growth factor. Graefe’s Archive for Clinical and Experimental Ophthalmology. 253 (9), 1465-1470 (2015).
  24. Christensen, L., Cerda, A., Olson, J. L. Real-time measurement of needle forces and acute pressure changes during intravitreal injections. Clinical & Experimental Ophthalmology. 45 (8), 820-827 (2017).
  25. Allmendinger, A., Butt, Y. L., Mueller, C. Intraocular pressure and injection forces during intravitreal injection into enucleated porcine eyes. European Journal of Pharmaceutics and Biopharmaceutics. 166, 87-93 (2021).
  26. Ross, M., Ofri, R. The future of retinal gene therapy: Evolving from subretinal to intravitreal vector delivery. Neural Regeneration Research. 16 (9), 1751-1759 (2021).
  27. Henein, C., et al. Hydrodynamics of intravitreal injections into liquid vitreous substitutes. Pharmaceutics. 11 (8), 371 (2019).
  28. Park, I., Park, H. S., Kim, H. K., Chung, W. K., Kim, K. Real-time measurement of intraocular pressure variation during automatic intravitreal injections: An ex-vivo experimental study using porcine eyes. PloS One. 16 (8), 0256344 (2021).
  29. Willekens, K., et al. Intravitreally injected fluid dispersion: Importance of injection technique. Investigative Ophthalmology & Visual Science. 58 (3), 1434-1441 (2017).
  30. Peynshaert, K., Devoldere, J., De Smedt, S. C., Remaut, K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Advanced Drug Delivery Reviews. 126, 44-57 (2018).
  31. Kiss, S. Vector Considerations for Ocular Gene Therapy. Adeno-associated virus vectors offer a safe and effective tool for gene delivery. Retinal Physician. 17, 40-45 (2020).
  32. Kleine Holthaus, S. -. M., et al. Gene therapy targeting the inner retina rescues the retinal phenotype in a mouse model of CLN3 Batten disease. Human Gene Therapy. 31 (13-14), 709-718 (2020).
  33. Kleine Holthaus, S. -. M., et al. Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease. Human Molecular Genetics. 28 (23), 3867-3879 (2019).
check_url/it/63823?article_type=t

Play Video

Citazione di questo articolo
Murray, S. J., Mitchell, N. L. Intravitreal Injections in the Ovine Eye. J. Vis. Exp. (185), e63823, doi:10.3791/63823 (2022).

View Video