Summary

非洲爪蟾 蝌蚪中生成视网膜损伤模型

Published: October 13, 2023
doi:

Summary

我们已经开发了几种方案来诱导 非洲爪 蟾蝌蚪的视网膜损伤或视网膜变性。这些模型为研究视网膜再生机制提供了可能性。

Abstract

视网膜神经退行性疾病是导致失明的主要原因。在正在探索的众多治疗策略中,刺激自我修复最近显得特别有吸引力。Müller神经胶质细胞是视网膜修复的一个感兴趣的细胞来源,它具有干细胞的潜力和非凡的再生能力。然而,这种潜力在哺乳动物中非常有限。在具有再生能力的动物模型中研究视网膜再生的分子机制应该有助于了解如何释放哺乳动物Müller细胞再生视网膜的潜在能力。这是再生医学治疗策略发展的关键一步。为此,我们在 非洲爪蟾中开发了几种视网膜损伤范式:机械性视网膜损伤、允许硝基还原酶介导的光感受器条件消融的转基因系、基于 CRISPR/Cas9 介导的视紫 红质 敲除的视网膜色素变性模型,以及由眼内注射 CoCl2 驱动的细胞毒性模型。为了强调它们的优点和缺点,我们在这里描述了这一系列的方案,这些方案会产生各种退行性条件,并允许研究 非洲爪蟾的视网膜再生。

Introduction

全世界有数百万人患有各种导致失明的视网膜退行性疾病,例如视网膜色素变性、糖尿病视网膜病变或年龄相关性黄斑变性 (AMD)。迄今为止,这些疾病在很大程度上仍然无法治愈。目前正在评估的治疗方法包括基因治疗、细胞或组织移植、神经保护治疗、光遗传学和假肢装置。另一种新兴策略是基于通过激活具有干细胞潜力的内源性细胞进行自我再生。Müller 神经胶质细胞是视网膜的主要神经胶质细胞类型,是在这种情况下感兴趣的细胞来源之一。受伤后,它们可以去分化、增殖并产生神经元 1,2,3虽然这个过程在斑马鱼或非洲爪蟾中非常有效,但在哺乳动物中却在很大程度上是低效的。

尽管如此,已经表明,用有丝分裂蛋白进行适当的治疗或各种因子的过表达可以诱导哺乳动物 Müller 神经胶质细胞周期重新进入,并且在某些情况下,触发其随后的神经发生承诺 1,2,3,4,5。然而,这在很大程度上仍不足以进行治疗。因此,增加我们对再生分子机制的了解对于确定能够有效地将Müller干细胞样特性转化为新的细胞治疗策略的分子是必要的。

为此,我们在 非洲爪蟾 中开发了几种触发视网膜细胞变性的损伤范式。在这里,我们提出了 (1) 非细胞类型特异性的机械性视网膜损伤,(2) 使用靶向杆细胞的 NTR-MTZ 系统的条件性和可逆细胞消融模型,(3) CRISPR/Cas9 介导的视 紫红质 敲除,触发进行性杆细胞变性的视网膜色素变性模型以及 (4) CoCl2诱导的细胞毒性模型,根据剂量可以特异性靶向视锥细胞或导致更广泛的视网膜细胞变性。我们强调每种范式的特殊性、优点和缺点。

Protocol

动物护理和实验是根据机构许可A91272108根据机构准则进行的。该研究方案已获得机构动物护理委员会 CEEA #59 的批准,并获得了 Direction Départementale de la Protection des Populations 的授权,参考编号为 APAFIS #32589-2021072719047904 v4 和 APAFIS #21474-2019071210549691 v2。有关这些方案中使用的所有材料、仪器和试剂的详细信息,请参阅 材料表 。 1.机械性视网膜损伤 <p cl…

Representative Results

机械性视网膜损伤遭受协议第 1 节中描述的机械损伤的蝌蚪视网膜切片显示,视网膜病变包含组织的所有层,同时仅限于穿刺部位(图 2A,B)。 使用 NTR-MTZ 系统的条件杆细胞消融如方案第2节所述,在立体显微镜下分析经MTZ处理的麻醉Tg(rho:GFP-NTR)转基因蝌蚪的眼睛(图3A,B<str…

Discussion

非洲爪蟾蝌蚪各种视网膜损伤范式的优缺点

机械性视网膜损伤
非洲爪蟾蝌蚪中已经发展出各种神经视网膜的手术损伤。神经视网膜可以完全切除 15,16 或仅部分切除16,17这里介绍的机械损伤不涉及任何视网膜切除术,而是我们之前在非洲爪?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了法国视网膜协会、法国基金会、FMR(罕见病基金会)、BBS(Bardet-Biedl 综合征协会)和 UNADEV(国家 Aveugles et Déficients Visuels)的赠款,并与 ITMO NNP(多生物体神经科学、认知科学、神经学、精神病学研究所)/AVIESAN(国家生命和健康科学联盟)合作。

Materials

1,2-Propanediol (propylène glycol) Sigma-Aldrich 398039
Absolute ethanol ≥99.8% VWR chemicals 20821-365
Anti-Cleaved Caspase 3 antibody (rabbit) Cell signaling 9661S Dilution 1/300
Anti-GFP antibody (chicken) Aveslabs GFP-1020 Dilution 1/500
Anti-M-Opsin antibody (rabbit) Sigma-Aldrich AB5405 Dilution 1/500
Anti-mouse secondary antibody, Alexa Fluor 594 (goat) Invitrogen Thermo Scientific A11005 Dilution 1/1,000
Anti-Otx2 antibody (rabbit) Abcam Ab183951 Dilution 1/100
Anti-rabbit secondary antibody, Alexa Fluor 488 (goat) Invitrogen Thermo Scientific A11008 Dilution 1/1,000
Anti-rabbit secondary antibody, Alexa Fluor 594 (goat) Invitrogen Thermo Scientific A11012 Dilution 1/1,000
Anti-Recoverin antibody (rabbit) Sigma-Aldrich AB5585 Dilution 1/500
Anti-Rhodopsin antibody (mouse) Sigma-Aldrich MABN15 Dilution 1/1,000
Anti-S-Opsin antibody (rabbit) Sigma-Aldrich AB5407 Dilution 1/500
Apoptotis detection kit (Dead end fluorimetric TUNEL system) Promega G3250
Benzocaine  Sigma-Aldrich E1501 Stock solution 10%
bisBenzimide H 33258 (Hoechst) Sigma-Aldrich B2883 Stock solution 10 mg/mL
Butanol-1 ≥99.5% VWR chemicals 20810.298
Calcium chloride dihydrate (CaCl2, 2H2O) Sigma-Aldrich (Supelco) 1.02382 Use at 0.1 M
Cas9 (EnGen Spy Cas9 NLS) New England Biolabs M0646T
Clark Capillary Glass model GC100TF-10 Warner Instruments (Harvard Apparatus) 30-0038
Cobalt(II) chloride hexahydrate (CoCl2, 6H2O) Sigma-Aldrich C8661 Stock solution 100 mM
Coverslip 24 x 60 mm VWR 631-1575
Dako REAL ab diluent  Agilent S202230-2
Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418
Electronic Rotary Microtome Thermo Scientific Microm HM 340E 
Eosin 1% aqueous RAL Diagnostics 312740
Fluorescein lysine dextran   Invitrogen Thermo Scientific D1822
Fluorescent stereomicroscope Olympus SZX 200
Gentamycin Euromedex EU0410-B
Glycerin albumin acc. Mallory Diapath E0012 Use at 3% in water
Hematoxylin (Mayer's Hemalun) RAL Diagnostics 320550
HEPES potassium salt Sigma-Aldrich H0527
Human chorionic gonadotropin hormone MSD Animal Health Chorulon 1500
Hydrochloric acid fuming, 37% (HCl) Sigma-Aldrich (SAFC) 1.00314
L-Cysteine hydrochloride monohydrate Sigma-Aldrich C7880 Use at 2% in 0.1x MBS (pH 7.8 – 8.0)
Magnesium Sulfate Heptahydrate (MgSO4, 7H2O) Sigma-Aldrich (Supelco) 1.05886
Metronidazole  Sigma-Aldrich (Supelco) M3761 Use at 10 mM
Microloader tips Eppendorf 5242956003
Micropipette puller (P-97 Flaming/Brown) Sutter Instrument Co. Model P-97 Program : Heat 700 / Pull 100 / Vel 75 / Time 90 / Unlocked p = 500
Mounting medium to preserve fluorescence, FluorSave Reagent Millipore 345789
Mounting medium, Eukitt Chem-Lab CL04.0503.0500
MX35 Ultra Microtome blade Epredia 3053835
Needle Agani 25 G x 5/8'' Terumo AN*2516R1
Nickel Plated Pin Holder Fine Science Tools 26016-12
Nylon filtration tissue (sifting fabric) NITEX, mesh opening 1,000 µm Sefar 06-1000/44
Paraffin histowax without DMSO Histolab 00403
Paraformaldehyde solution (32%) Electron Microscopy Sciences EM-15714-S Use at 4% in 1x PBS pH 7.4
Peel-A-Way Disposable Embedding Molds Epredia 2219
Pestle VWR 431-0094
Petri Dish 100 mm Corning Gosselin SB93-101
Petri Dish 55 mm Corning Gosselin BP53-06
Phosphate Buffer Saline Solution (PBS) 10x Euromedex ET330-A
PicoSpritzer Microinjection system Parker Instrumentation Products PicoSpritzer III
Pins  Fine Science Tools 26002-20
Polysucrose (Ficoll PM 400 ) Sigma-Aldrich F4375 Use at 3% in 0.1x MBS
Potassium chloride (KCl) Sigma-Aldrich P3911
Powdered fry food : sera Micron Nature sera 45475 (00720)
Scissors dissection Fine Science Tools 14090-09
Slide Superfrost   KNITTEL Glass VS11171076FKA 
Slide warmer Kunz instruments HP-3
Sodium chloride (NaCl) Sigma-Aldrich S7653
Sodium citrate trisodium salt dihydrate (C6H5Na3O7, 2H2O) VWR chemicals 27833.294
Sodium hydrogen carbonate (NaHCO3) Sigma-Aldrich (Supelco) 1.06329
Sodium hydroxide 30% aqueous solution (NaOH) VWR chemicals 28217-292
Stereomicroscope Zeiss Stemi 2000
Syringes Omnifix-F Solo Single-use Syringes 1 mL B-BRAUN 9161406V
trans-activating crRNA (tracrRNA) Integrated DNA Technologies 1072533
Triton X-100 Sigma-Aldrich X-100
Tween-20 Sigma-Aldrich P9416
X-Cite 200DC Fluorescence Illuminator X-Cite  200DC
Xylene ≥98.5%  VWR chemicals 28975-325

Riferimenti

  1. Goldman, D. Müller glial cell reprogramming and retina regeneration. Nature reviews. Neuroscience. 15 (7), 431-442 (2014).
  2. Hamon, A., Roger, J. E., Yang, X. -. J., Perron, M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Developmental Dynamics. 245 (7), 727-738 (2016).
  3. García-García, D., Locker, M., Perron, M. Update on Müller glia regenerative potential for retinal repair. Current Opinion in Genetics & Development. 64, 52-59 (2020).
  4. Todd, L., et al. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Reports. 37 (3), 109857 (2021).
  5. Hoang, T., et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 370 (6519), (2020).
  6. Langhe, R., et al. Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia. 65 (8), 1333-1349 (2017).
  7. Chesneau, A., Bronchain, O., Perron, M. Conditional chemogenetic ablation of photoreceptor cells in Xenopus retina. Methods in Molecular Biology. 1865, 133-146 (2018).
  8. Martinez-De Luna, R. I., Zuber, M. E. Rod-specific ablation using the nitroreductase/metronidazole system to investigate regeneration in Xenopus. Cold Spring Harbor protocols. 2018 (12), (2018).
  9. Zahn, N., et al. Normal Table of Xenopus development: a new graphical resource. Development. 149 (14), (2022).
  10. McNamara, S., Wlizla, M., Horb, M. E. Husbandry, general care, and transportation of Xenopus laevis and Xenopus tropicalis. Methods in Molecular Biology. 1865, 1-17 (2018).
  11. Parain, K., et al. CRISPR/Cas9-mediated models of retinitis pigmentosa reveal differential proliferative response of Müller cells between Xenopus laevis and Xenopus tropicalis. Cells. 11 (5), 807 (2022).
  12. Wlizla, M., McNamara, S., Horb, M. E. Generation and care of Xenopus laevis and Xenopus tropicalis embryos. Methods in Molecular Biology. 1865, 19-32 (2018).
  13. Yuan, S., Sun, Z. Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. Journal of Visualized Experiments JoVE. (27), (2009).
  14. Parain, K., Chesneau, A., Locker, M., Borday, C., Perron, M. Regeneration from three cellular sources and ectopic mini-retina formation upon neurotoxic retinal degeneration in Xenopus. bioRxiv. , (2023).
  15. Vergara, M. N., Del Rio-Tsonis, K. Retinal regeneration in the Xenopus laevis tadpole: a new model system. Molecular Vision. 15, 1000-1013 (2009).
  16. Lee, D. C., Hamm, L. M., Moritz, O. L. Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation. Investigative Ophthalmology & Visual Science. 54 (3), 1859-1867 (2013).
  17. Martinez-De Luna, R. I., Kelly, L. E., El-Hodiri, H. M. The retinal homeobox (Rx) gene is necessary for retinal regeneration. Biologia dello sviluppo. 353 (1), 10-18 (2011).
  18. Choi, R. Y., et al. Cone degeneration following rod ablation in a reversible model of retinal degeneration. Investigative Ophthalmology & Visual Science. 52 (1), 364-373 (2011).
check_url/it/65771?article_type=t

Play Video

Citazione di questo articolo
Parain, K., Donval, A., Chesneau, A., Lun, J. X., Borday, C., Perron, M. Generating Retinal Injury Models in Xenopus Tadpoles. J. Vis. Exp. (200), e65771, doi:10.3791/65771 (2023).

View Video