Summary

定量测量的侵袭伪足介导的细胞外基质蛋白水解单和多细胞的情况下

Published: August 27, 2012
doi:

Summary

我们描述了典型的方法涂有荧光可视化侵袭伪足介导的基质降解明胶的生产显微镜的盖玻片。利用现有的软件的计算技术,提出了一个混合的人口和量化结果由单个细胞内的基质蛋白水解为多细胞群体,涵盖整个微观领域。

Abstract

局部组织的细胞浸润到是一个重要的发展和平衡的过程。 malregulated入侵并随后细胞运动是多个病理过程,包括炎症,心血管疾病和肿瘤细胞转移1的特征。 focalized蛋白水解降解的胞外基质(ECM)的组件中的上皮细胞或内皮基底膜是启动细胞侵袭的一个关键步骤。在肿瘤细胞中,已确定, 在体外分析广泛ECM的降解是通过腹侧肌动蛋白富集膜凸结构称为侵袭伪足2,3。侵袭伪足形式在紧密合到的ECM,在那里它们通过的作用,基质金属蛋白酶(MMPs)中度ECM击穿。肿瘤细胞的能力,以形成侵袭伪足直接相关与标注侵入本地基质和相关的血管成分3。

_content“>可视化的侵袭伪足介导的细胞外基质降解的细胞荧光显微镜用染料标记的基质蛋白涂在玻片上已经成为最流行 ​​的技术评估基质蛋白水解的程度和细胞侵袭能力4,5。在这里,我们描述一个版本产生荧光标记的玻片上,利用商业可用的俄勒冈绿-488明胶共轭的标准方法,这种方法很容易扩展到迅速产生大量的涂盖玻片,我们中经常遇到的一些常见的微观文物在此过程中,如何将这些可避免的。最后,我们使用现成的电脑软件,允许标记的明胶基质的降解介导的单个细胞和整个细胞群的量化描述的标准化方法。所描述的程序提供了准确和可重复的监测能力侵袭伪足活性,也可以作为一个平台,用于评估调制蛋白的表达或测试抗侵入性的胞外基质降解的化合物对单和多细胞设置的疗效。

Protocol

1。俄勒冈州绿色生产488-明胶涂层盖玻片准备一个未标记的5%(w / w的)库存明胶/蔗糖溶液加入1.25克明胶和1.25克蔗糖在PBS中至终体积为50ml。的股票明胶溶液预热至37°C,并确保它完全融化之前使用。最终混合物在4℃下存放清洁直径为13mm的第1玻璃盖玻片放置到24孔塑料组织培养板的各孔中的一个单独的盖玻片。向每孔中加入500μl的20%硝酸中,并温育30分钟。吸液的硝酸溶液,并用…

Discussion

辅助能力,可视化细胞降解细胞外基质中发现的早期步骤侵袭细胞的分子机制。陈文添在20世纪80年代初4,14,15首创,涂料荧光标记的细胞外蛋白质随后的微观分析的盖玻片上已经出现的主要技术评估侵袭伪足的功能范围广泛的细胞类型。规定的协议演示的基本的方法,用于制备明胶包被的盖玻片,形成一个小于2微米厚的胶原层适合于检测到的细胞外基质降解由细胞中最常规的荧光和激光?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是从西弗吉尼亚大学玛丽巴布伦道夫癌症中心捐赠基金的支持。我们感谢“穆勒Susette(乔治城大学)和劳拉·凯利早期的意见和协助。西弗吉尼亚大学的显微成像设备的使用(支持玛丽巴布兰多夫癌症中心,国立卫生研究院资助P20 RR16440,P30 RR032138和P30 GM103488)表​​示感谢。

Materials

Name of Reagent/Instrument Company Catalogue Number Comments
gelatin Sigma G1890 Porcine skin
sucrose Fisher BP220  
12 mm coverslips Fisher 50-121-5159  
24 well plates Fisher 08-772-1 BD Falcon
nitric acid Ricca R5326000 20% solution
poly-L-lysine Electron Microscopy Sciences 19320-B 0.1% solution
glutaraldehyde Sigma G7526 8% solution
Oregon Green 488-conjugated gelatin Invitrogen G-13186  
sodium borohydride Sigma 213462  
Triton X-100 Fisher BP151  
rhodamine-phalloidin Invitrogen R415  
anti-cortactin (clone 4F11) Millipore 05-180  
Anti-FLAG antibody Millipore MAB3118  
Alexa Fluor 647 Goat anti-mouse IgG Invitrogen A21235  
ProLong Gold antifade Invitrogen P36930  
LSM 510 Confocal Microscope Zeiss    
ImageJ software Public domain   http://www.macbiophotonics.ca/imagej/
AutoQuant X2.2 software Media Cybernetics    
NIS Elements software Nikon    

References

  1. Ridley, A. J. Life at the leading edge. Cell. 145, 1012-1022 (2011).
  2. Murphy, D. A., Courtneidge, S. A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413-426 (2011).
  3. Linder, S., Wiesner, C., Himmel, M. Degrading Devices: Invadosomes in Proteolytic Cell Invasion. Annu. Rev. Cell. Dev. Biol. , (2010).
  4. Chen, W. T., Chen, J. M., Parsons, S. J., Parsons, J. T. Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature. 316, 156-158 (1985).
  5. Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M., Mueller, S. C. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 66, 3034-3043 (2006).
  6. Ayala, I., et al. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J. Cell Sci. , (2008).
  7. Ammer, A. G., et al. Saracatinib impairs head and neck squamous cell carcinoma invasion by disrupting invadopodia function. J. Cancer Sci. Ther. 1, 52-61 (2009).
  8. Seals, D. F., et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell. 7, 155-165 (2005).
  9. Yamaguchi, H., et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441-452 (2005).
  10. Kopp, P., et al. The kinesin KIF1C and microtubule plus ends regulate podosome dynamics in macrophages. Mol. Biol. Cell. 17, 2811-2823 (2006).
  11. Oser, M., et al. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J. Cell. Biol. 186, 571-587 (2009).
  12. Abramoff, M. D., Magalhaes, P. J., Ram, S. J. Image Processing with ImageJ. Biophotonics International. 11 (7), 36-42 (2004).
  13. Kelley, L. C., et al. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J. Cell Sci. 123, 3923-3932 (2010).
  14. Chen, W. T., Singer, S. J. Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrata. Proc. Natl. Acad. Sci. U.S.A. 77, 7318-7322 (1980).
  15. Chen, W. T., Olden, K., Bernard, B. A., Chu, F. F. Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J. Cell Biol. 98, 1546-1555 (1984).
  16. Bharti, S., et al. Src-dependent phosphorylation of ASAP1 regulates podosomes. Mol. Cell Biol. 27, 8271-8283 (2007).
  17. Albrechtsen, R., Stautz, D., Sanjay, A., Kveiborg, M., Wewer, U. M. Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity. Exp. Cell Res. 317 (10), 195-209 (2011).
  18. Scott, R. W., et al. kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J. Cell Biol. 191, 169-185 (2010).
  19. Mueller, S. C., Yeh, Y., Chen, W. T. Tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. J. Cell. Biol. 119, 1309-1325 (1992).
  20. Bowden, E. T., Coopman, P. J., Mueller, S. C. Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol. 63, 613-627 (2001).
  21. Baldassarre, M., et al. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol. Biol. Cell. 14, 1074-1084 (2003).
  22. Alexander, N. R., et al. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18, 1295-1299 (2008).
  23. Artym, V. V., Yamada, K. M., Mueller, S. C. ECM degradation assays for analyzing local cell invasion. Methods Mol. Biol. 522, 211-219 (2009).
  24. Schoumacher, M., Goldman, R. D., Louvard, D., Vignjevic, D. M. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189, 541-556 (2010).
  25. Clark, E. S., Whigham, A. S., Yarbrough, W. G., Weaver, A. M. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 67, 4227-4235 (2007).
  26. Yamaguchi, H., et al. Phosphoinositide 3-kinase signaling pathway mediated by p110alpha regulates invadopodia formation. J. Cell Biol. 193, 1275-1288 (2011).
  27. Li, A., et al. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr. Biol. 20, 339-345 (2010).
  28. Yamaguchi, H., et al. Phosphatidylinositol 4,5-bisphosphate and PIP5-kinase Ialpha are required for invadopodia formation in human breast cancer cells. Cancer Sci. , (2010).
check_url/kr/4119?article_type=t

Play Video

Cite This Article
Martin, K. H., Hayes, K. E., Walk, E. L., Ammer, A. G., Markwell, S. M., Weed, S. A. Quantitative Measurement of Invadopodia-mediated Extracellular Matrix Proteolysis in Single and Multicellular Contexts. J. Vis. Exp. (66), e4119, doi:10.3791/4119 (2012).

View Video