Summary

Embriyonik Fare Kalpler Gelişmekte Hücre Etiketleme ve Enjeksiyon

Published: April 17, 2014
doi:

Summary

Biz, (E) 9.5 ve daha sonraki aşamalarında embriyonik gün fare embriyoları olan embriyonik veya pluripotent hücrelerinden elde edilen iç ve aşılanmış hücrelerden hücre kaderine ve fenotipi hem izlenmesi amacıyla, boyalar enjekte DNA vektörleri, virüs, ve hücreler, bir dizi yöntem tarif gelişme.

Abstract

In vitro protokol embriyonik veya pluripotent kök hücre-türevlerinin kaderini test edilmesi zorunlu olarak in vivo potansiyel yansıtmaz tartışmalı sonuçlara yol açmıştır. Tercihen, bu hücreler, belirli bir fenotip elde etmek için uygun bir oluşum safhasındaki bir ortamda yerleştirilmelidir. Ayrıca, boya veya retroviral vektörler ile hücrelerin etiketlenmesi sonra fare çalışmaları izleme hücre soyu hala az gelişmiş organları ile erken evre fare embriyoları çoğunlukla sınırlı kalmıştır. Bu sınırlamaları aşmak için, E9.5 ve gelişiminin sonraki aşamalarında fare embriyosunda kalp hedeflenen bölgelerde çeşitli maddeler enjekte etmek, standart ve ultrason aracılı mikroenjeksiyon protokolleri tasarlanmıştır. Embriyonik eksplant ya da embriyolar ya da daha fazla kültürlendi utero geliştirmeye bırakılır. Bu maddeler, fluoresan boyalar, virüs, shRNAs veya hücre-türevi projenitör hücrelerini içerir. Bizim yaklaşımlar fu korunması için izinorganın nction göçünü ve işaretlenmiş ve / veya enjekte edilen hücrelerin kaderini gözlenerek. Bu teknolojiler diğer organlara uzatılabilir ve gelişim biyolojisinde önemli biyolojik soruları için çok yararlı olacaktır.

Introduction

Daha on yıl önce, insan embriyonik kök hücreleri (HuESCs) insan blastosistlerin 1 elde edilmiştir. O zamandan beri, bu hücreler, insan gelişim biyolojisi karşılanmamış sorular adresleri önemli bir araştırma alanının konusu haline gelmiştir. HuESCs ayrıca rejeneratif tıpta umut sağladı. Son yıllarda, insan uyarılmış pluripotent kök hücreler (iPSCs) 2 genetik hastalık modelleri sağlayan, hastaya özgü somatik hücrelerinden elde edilmiştir. Kalp soy 3 de dahil olmak üzere çeşitli hücre soyları, doğru ya da embriyonik uyarılmış pluripotent kök hücrelerin farklılaşması için in vitro protokol birçok rapor edilmiştir. Farklılaşmış hücreleri genellikle RNA ve protein ifadesi, immun boyama, ve / veya in vitro fonksiyonel testler analizi ile fenotiplenir. Bununla birlikte, pluripotent kök hücresi türevleri tam cel elde olup olmadığını test etmek için uygun bir oluşum safhasındaki bir ortamda yerleştirilmesi gerekirl kendi embriyonik meslektaşı kaderi ve bölgesel uyaranlara yanıt olarak gerçek in vivo fonksiyonu özetlemek ister. Doku mühendisliği umut verici olmasına rağmen, henüz gelişmekte olan embriyonik doku 4,5 in vivo olarak uygun tüm bilinen ve bilinmeyen ipuçları sağlamaz.

Fare embriyoları içeren embriyolar, boyalar veya retroviral vektörlerle hücre etiketleme, kalp gelişimi 6 sırasında hücre soylarının embriyonik kökeni gibi önemli bilgileri getirdi. Örneğin, izole edilmiş kalpler in vitro kültürü ile, ardından ex vivo fare embriyoları, en perikardiyal boşluğu içine enjeksiyon boya, epikardiyal hücreleri ve bunların soyundan 7 etiketlemek için kullanıldı. Ancak, boya ve retroviral hücre etiketleme çoğunlukla 8 daha kolay erişilebilir hala az gelişmiş organ veya tavuk embriyolar, erken fare embriyoları tatbik edilmiştir. Bir istisna e hedef kolaydır, beyin tarafındanmbryos 9,10. Böyle bir yaklaşım, henüz dayak embriyonik fare kalp tatbik edilmemiştir.

Boyalar ya da virüs doğrudan etiketleme tamamlayıcı olarak ve daha ileri evre fare embriyo ve yetişkin farelerde izleme soy gerçekleştirmek için, hücre etiketleme yaklaşımı Cre / Lox teknolojisi kullanılarak transgenik farelerin analizi ile kombine edilmiştir. Cre / Lox yaklaşımı 11 ancak rekombinazın ekspresyonunu tahrik etmek için kullanılabilir genomik düzenleyici bölgelerin uzaysal özgüllük ve Cre / Lox rekombinasyon 12 verim nedeniyle bazı sınırlamalar vardır. Sadece Cre ekspresyonunu tahrik etmek için kullanılan düzenleyici bölgesi aktivasyonunun ardından bir ön etiket gibi Bundan başka, bu yaklaşım, tam hücre kaderin hücre göçü odaklı edinim özel soruları gidermez. Ayrıca bariz etik sorunları için insan embriyosu için geçerli olamaz.

Bu sınırlamalar göz önüne alındığında, biz yeni p bir dizi tasarlanmışhedeflenmiş bölgelerinde bu gibi floresan boyalar, virüs, ve bu shRNAs DNA-bazlı hücre etiketleme vektörleri gibi gen ekspresyonu modülatörlerinin veya E9.5 ve gelişiminin sonraki evrelerinde de fare embriyo hücreleri gibi hücre etiketleme çeşitli ajanlar enjekte rotocols kalp.

DNA / hücre enjeksiyonları Stereomikroskopta ve 48 saat veya 48-72 saat boyunca izole kalp ya da embriyonik eksplant kültürü kadar ex vivo embriyo kültürü ile birlikte basit bir mikroenjeksiyon cihazı kullanın. Biz de rahimde fare embriyonik gönlünde bir ultrason aracılı mikroenjeksiyon protokol rapor. Bu teknik embriyoların 13 gelişimini izleme sağlar ve injectates ve / veya etiketli hücrelerin uzun süreli takip için izin verir.

Biz, bu yaklaşımlar organın işlevini korumak ve kök hücre potansiyeli in vitro test daha temsili bir ortam temin ettiği bulunmuştur. Ayrıca göç takip fırsat sağlarkendi kaderini izlemek hücreleri etiketli ve / veya enjekte. Sonuç olarak, bu bölge, doku desenleme ve önemli biyolojik süreçlerin daha iyi bir anlayış elde edilmelidir.

Protocol

1.. Hazırlık Hayvan Prosedürleri Bir hayvan etik kurul onay almak ve virüs ile çalışmak için kurumsal yönergeleri izleyin, HuESC ve / veya iPSC (varsa) yanı sıra, fare kullanımı, fare embriyo elde edilmesi, ve fare ameliyat. Zamanlı eşleştirmesi için, tıpanın gün embriyonik gün (E) 0.5 / 0.5 gün post-coitum olarak kabul edilir. Mikroenjeksiyon iğneler: Ex utero mikroenjeksiyon için, 1 ya da 10 mikron iç uç çap…

Representative Results

Yukarıda tarif edilen enjeksiyon protokolleri kullanılarak, hücreler, 'etiketlenmiş ve / veya embriyonik fare kalp içine enjekte edilebilir. Kavramının kanıtı olarak, birkaç örnek enjeksiyon protokolü ve ex vivo AVC eksplant, izole edilmiş kalp veya bir bütün olarak embriyo kültürü (Şekil 1) bir araya getirilmiş olduğu gösterilmiştir. Şekil 1, hücre enjekte edilmeden önce embriyonun hazırlanışını göstermektedir. Y…

Discussion

Yukarıda tarif edilen intra kardiyak ex vivo enjeksiyon protokolleri orta aşama (E9.5-E11.5) fare embriyo en az 48 saat boyunca miyokard fonksiyonu korumak için tasarlanmıştır. Bu enjeksiyon yaklaşımlar DNA ya da hücre konumsal hedeflenen enjeksiyon için izin verir. Şekiller 1-3 de gösterilen birkaç örnek ex vivo ve bu endokardiyal veya epikardiyal hücre EMT olarak kısıtlı kalp bölgelerinde yer alan gelişimsel süreçlerinin vivo moleküler mekanizmalar…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Yazarlar Vakfı Leducq (Mitral) ve Agence Nationale bu araştırmalara fon la Recherche (ANR Specistem hibe) dökün kabul.

Materials

Setups / Hardware
40 MHz Transducer VisualSonics MS550S
Microinjector VisualSonics
Microinjector  Eppendorf 5242
Micromanipulator  Eppendorf 5171
Nitrogen required to pressurize the injector
Rail system VisualSonics
rotator to rotate glass tube with embryos inside the incubator
Standard incubator 5% CO2, 37 C
stereomicroscope Zeiss Discovery. V8
Vevo 2100 VisualSonics
Microinjection
borosilicate capillary tubes World Precision Instrument KTW-120-6 1.2 mm external diameter
pipette puller  Sutter Model P87
microinjection needles Origio-Humagen  C060609 OD/ID 1.14mm/53mm, with 50/35 um OD/ID tip
Hamilton syringes 
Petridishes 10 cm diameter
Mineral oil  Sigma M8410
Silicon membrane Visualsonics 4.3×4.3 cm
Play-Doh
Isoflurane Vet One
hair removal agent  Nair
eye lubricant Optixcare 31779
Electrode gel (Signa) Parker
Suture Sofsilk 5-0 S1173
Ultrasound gel Aquasonic
Buprenex Buprenex (buprenorphine hydrochloride) Reckitt Benckiser Pharmaceuticals Inc. NDC 12496-0757-1 0.05-0.1 mg/kg in saline
기타
Silicone Elastomer Dow Corning Sylgard 184 
Glass petridishes Fine Science Tools  60mm diameter
insect pins  Fine Science Tools  26002-20
Media and culture reagents
Optimem medium Life Technologies 51985026
M2 medium  Sigma M7167
Dulbecco’s Eagle Medium Lonza BE12-640F high glucose and 50% rat serum
M16 medium  Sigma M7292
rat serum Janvier ODI 7158
pennicilin/streptomycin  Life Technologies 15140-12
oxygen 40% Air liquid required to oxygenate the embryo culture medium
fetal calf serum Fisher RVJ35882
matrigel BD 356230
collagen type I BD 354236 to coat culture dishes for explant culture
culture dishes Dutcher /Orange 131020
Injectates
CDCFDA-SE  Invitrogen/Molecular Probes  C1165 25mg/ml DMSO. Store at -20 C. Dilute 1:100-200 in saline before use. 
PGK-GFP-expressing lentivirus  ~8E9 transducing units/ml DMEM
lipofectamine 2000  Life Technologies 11668019

References

  1. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147 (1998).
  2. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Mummery, C. L., et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344-358 (2012).
  4. Badylak, S. F., Taylor, D., Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27-53 (2011).
  5. Dickinson, L. E., Kusuma, S., Gerecht, S. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol. Biosci. 11, 36-49 (2011).
  6. Van Vliet, P., Zaffran, S., Wu, S., Puceat, M. Early cardiac development: a view from stem cells to embryos. Cardiovasc. Res. In press, (2012).
  7. Cai, C. L., et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 454, 104-108 (2008).
  8. Boulland, J. L., Halasi, G., Kasumacic, N., Glover, J. C. Xenotransplantation of human stem cells into the chicken. J. Vis. Exp. , (2010).
  9. Liu, A., Joyner, A. L., Turnbull, D. H. Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev. 75, 107-115 (1998).
  10. Pierfelice, T. J., Gaiano, N. Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5. J. Vis. Exp. , (2010).
  11. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis. 26, 99-109 (2000).
  12. Buckingham, M. E., Meilhac, S. M. Tracing cells for tracking cell lineage and clonal. Dev. Cell. 21, 394-409 (2011).
  13. Phoon, C. K. Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr. Res. 60, 14-21 (2006).
  14. Tiscornia, G., Singer, O., Verma, I. M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241-245 (2006).
  15. Dyer, L. A., Patterson, C. A Novel Ex vivo Culture Method for the Embryonic Mouse. J. Vix. Exp. , (2013).
  16. Runyan, R. B., Markwald, R. R. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95, 108-114 (1983).
check_url/kr/51356?article_type=t

Play Video

Cite This Article
Hiriart, E., van Vliet, P., Dirschinger, R. J., Evans, S. M., Puceat, M. Cell Labeling and Injection in Developing Embryonic Mouse Hearts. J. Vis. Exp. (86), e51356, doi:10.3791/51356 (2014).

View Video