Summary

新生大鼠于A气味偏侧学习模型解剖神经回路托换记忆的形成

Published: August 18, 2014
doi:

Summary

This protocol introduces lateralized early odor preference learning in rats using acute single naris occlusion. Lateralized learning permits the examination of behavioral outcomes and underpinning biological mechanisms within the same animals, reducing variance induced by between-animal designs. This protocol can be used to investigate molecular mechanisms underpinning early odor learning.

Abstract

Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.

Introduction

嗅觉是初级感觉方式在啮齿类动物中,没有它们就不能成功地浏览或在其环境中生存。这是新生儿的幼崽,它可以既看不见也听不到在第一产后一周,用嗅觉,以找到他们的母亲喂养1尤其重要。因此,新生儿幼鼠能条件反射地偏爱气味与简单的实验操作。各种刺激已被用来作为非条件刺激(UCS)以诱导调节的反应,新颖的气味(条件刺激,CS)的新生儿,包括嵌套环境2,3,乳乳4-6,抚摸或触觉刺激7- 12,尾巴捏13,产妇的唾液13,轻度电击足底14-18,和颅内脑刺激19。本研究采用了一种行之有效的早期气味偏好的模式,其中的气味,在这种情况下薄荷,我š以产生偏爱薄荷24小时后10,11,20结合触觉刺激。这些气味的记忆是依赖于完整的嗅觉电路,主要包括嗅球(OB)21-23和前梨状皮质(APC)24,25。

早期的气味偏好的学习实验研究,加深和拓宽了我们的哺乳动物记忆的分子和生理基础的理解。这种哺乳动物模型具有学习记忆机制的几大优势。首先,UCS信号的神经来源已经确定。如上面提到的各种刺激刺激蓝斑的去甲肾上腺素释放26,从而激活多个肾上腺素能受体中的转播和APC,引起支持学习22,27,28细胞和生理效应。第二,存储器 – 支持机制发生在良好定义的层的神经结构。该新生大鼠嗅觉电路简洁为研究人员提供与发掘相关的突触可塑性的复杂过程的理想框架。嗅觉的感觉神经元(OSN)中的嗅觉上皮项目上二尖瓣/簇绒细胞中的转播和这些二尖瓣/簇绒细胞反过来项目同侧经由横向嗅束(LOT)梨状皮层(PC),其他结构29之间。无论是在OB 30,31的OSN突触和突触地段24,25参阅APC已被确定为关键位点为支持学习记忆的突触变化和。第三,在幼年大鼠,嗅觉输入可以很容易地单侧。每个APC有一次,通过这种白色物质完全形成,在产后第12天(PD12)32前联合访问两国的气味信息。帕金森病12日前,异味输入可隔离通过单鼻孔闭塞24,25,31,33,34 <到ipisilateral转播和APC/ SUP>。单鼻孔闭塞允许从开启鼻孔的气味记忆的形成,并且防止在同一存储器从现有的闭塞鼻孔到PD 12 33。气味存储器分离到同侧半球包括OB和APC。因此,每只大鼠的小狗可以自己控制学习和支撑生理学。

在本研究中,单侧早期气味偏好学习协议被引入。该方法可作为一种强大的工具用于研究通过提供一种帧内动物控制24,25,31,从而减少了所需的动物数量和一般的变异支撑气味学习神经机制。鼻孔闭塞是可逆的,所述润滑脂或鼻子塞可以应用和以最小的应力或者损坏的动物中移除。在这里,首先,早期气味偏好的培训和测试的详细过程进行了描述,重点是使用单鼻孔闭塞了号的单侧协议ê插头。然后结果被提出来证明在分离的气味输入并产生单侧气味存储器单鼻孔闭塞的有效性。最后,利用该单侧学习模型来研究生理变化的嗅觉系统,这两个生成学习和支撑记忆表达的潜力进行了讨论。

Protocol

无论男女,只SD大鼠(查尔斯河)的幼崽被使用。窝被扑杀,以12 PD1(出生是PD0)。水坝维持12小时的光/暗周期, 随意获取食物和水。实验步骤已通过纪念大学实验动物管理委员会。 1,鼻封堵施工注:此程序改编和卡明斯等人修改(1997)35。 AQUIRE聚乙烯20管和3-0丝线缝合线。 剪一小块聚乙烯管材20到约0.8mm。 <…

Representative Results

在这里,我们回顾一些先前建立的结果24,以显示在分离的气味输入和学 ​​习到一个半球的鼻孔闭塞的有效性,并且该方法的可逆性。 在早期的气味偏好训练单鼻孔闭塞导致单侧气味记忆24。该存储器被限制在幸免鼻孔( 图3)。当幼崽进行了测试气味的喜好与同鼻孔闭塞的训练时,他们表现出偏爱空调异味( 如薄荷)。当幼崽与封闭相…

Discussion

首先由霍尔及其同事建立了幼鼠的单侧臭味学习和记忆模型中的一个关键的时间窗口。在一系列的研究中33,34,36,他们发现气味偏好的内存可以通过气味+豆浆配对的幼鼠进行单侧一个鼻孔在帕金森病6。偏好的记忆是强大的,当同样的鼻孔是在训练和测试开放的,但没有观察到,当闭塞鼻孔是畅通和测试。然而,在帕金森病12,当来自前嗅皮层前连合的连接成为功能32,未受过训练?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a CIHR operating grant (MOP-102624) to Q. Y. We thank Dr Carolyn Harley for helpful discussions throughout the study, Dr. Qinlong Hou, Amin Shakhawat, and Andrea Darby-King for technical support.

Materials

Polythylene 20 tubing Intramedic 427406 Non radiopaque, Non toxic
3-0 silk suture thread Syneture Sofsilk Non absorbant 
Silicone grease Warner Instrument 64-0378 Odorless
2% xylocaine gel AstraZeneca Prod. No 061 Lidocaine hydrochloride jelly,  purchased at local pharmacy
Paint brush Dynasty 206R Similar size/other brands work too
Peppermint extract Sigma-Aldrich W284807 Other brand should be okay too
Training box Custom-made N/A Acrylic box (20x20x5cm3), see Figure 2A. Parameters and material for the box are not critical and can be modified. Material used should be odorless and does not absorb odors
Testing chamber Custom-made N/A Stainless steel (30x20x18cm3), see Figure 2B. Parameters and material for the chamber are not critical and can be modified. For example, an acrylic chamber instead of a stainless steel one can be used
pCREB antibody Cell Signaling 9198 Ser 133 (87G3) Rabbit mAb
Chloral hydrate Sigma-Aldrich C8383 N/A
Paraformaldehype Sigma-Aldrich P6148 N/A
Sucrose Sigma-Aldrich S9378 N/A

References

  1. Gregory, E. H., Pfaff, D. W. Development of olfactory-guided behavior in infant rats. Physiol Behav. 6, 573-576 (1971).
  2. Alberts, J. R., May, B. Nonnutritive, thermotactile induction of filial huddling in rat pups. Dev Psychobiol. 17, 161-181 (1984).
  3. Galef, B. G., Kaner, H. C. Establishment and maintenance of preference for natural and artificial olfactory stimuli in juvenile rats. J Comp Physiol Psychol. 94, 588-595 (1980).
  4. Johanson, I. B., Hall, W. G. Appetitive learning in 1-day-old rat pups. Science. 205, 419-421 (1979).
  5. Johanson, I. B., Hall, W. G. Appetitive conditioning in neonatal rats: conditioned orientation to a novel odor. Dev Psychobiol. 15, 379-397 (1982).
  6. Johanson, I. B., Teicher, M. H. Classical conditioning of an odor preference in 3-day-old rats. Behav Neural Biol. 29, 132-136 (1980).
  7. McLean, J. H., Darby-King, A., Sullivan, R. M., King, S. R. Serotonergic influence on olfactory learning in the neonate rat. Behav Neural Biol. 60, 152-162 (1993).
  8. Moore, C. L., Power, K. L. Variation in maternal care and individual differences in play, exploration, and grooming of juvenile Norway rat offspring. Dev Psychobiol. 25, 165-182 (1992).
  9. Pedersen, P. E., Williams, C. L., Blass, E. M. Activation and odor conditioning of suckling behavior in 3-day-old albino rats. J Exp Psychol Anim Behav Process. 8, 329-341 (1982).
  10. Sullivan, R. M., Hall, W. G. Reinforcers in infancy: classical conditioning using stroking or intra-oral infusions of milk as UCS. Dev Psychobiol. 21, 215-223 (1988).
  11. Sullivan, R. M., Leon, M. Early olfactory learning induces an enhanced olfactory bulb response in young rats. Brain Res. 392, 278-282 (1986).
  12. Weldon, D. A., Travis, M. L., Kennedy, D. A. Posttraining D1 receptor blockade impairs odor conditioning in neonatal rats. Behav Neurosci. 105, 450-458 (1991).
  13. Sullivan, R. M., Hofer, M. A., Brake, S. C. Olfactory-guided orientation in neonatal rats is enhanced by a conditioned change in behavioral state. Dev Psychobiol. 19, 615-623 (1986).
  14. Camp, L. L., Rudy, J. W. Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Dev Psychobiol. 21, 25-42 (1988).
  15. Moriceau, S., Wilson, D. A., Levine, S., Sullivan, R. M. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci. 26, 6737-6748 (2006).
  16. Roth, T. L., Sullivan, R. M. Endogenous opioids and their role in odor preference acquisition and consolidation following odor-shock conditioning in infant rats. Dev Psychobiol. 39, 188-198 (2001).
  17. Roth, T. L., Sullivan, R. M. Consolidation and expression of a shock-induced odor preference in rat pups is facilitated by opioids. Physiol Behav. 78, 135-142 (2003).
  18. Sullivan, R. M. Developing a sense of safety: the neurobiology of neonatal attachment. Ann N Y Acad Sci. 1008, 122-131 (2003).
  19. Wilson, D. A., Sullivan, R. M. Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences. Brain Res Dev Brain Res. 53, 215-221 (1990).
  20. Sullivan, R. M., Wilson, D. A., Leon, M. Associative Processes in Early Olfactory Preference Acquisition: Neural and Behavioral Consequences. Psychobiology. , 29-33 (1989).
  21. McLean, J. H., Harley, C. W., Darby-King, A., Yuan, Q. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem. 6, 608-618 (1999).
  22. Sullivan, R. M., Stackenwalt, G., Nasr, F., Lemon, C., Wilson, D. A. Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci. 114, 957-962 (2000).
  23. Yuan, Q., Harley, C. W., McLean, J. H. Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem. 10, 5-15 (2003).
  24. Fontaine, C. J., Harley, C. W., Yuan, Q. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory. J Neurosci. 33, 15126-15131 (2013).
  25. Morrison, G. L., Fontaine, C. J., Harley, C. W., Yuan, Q. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup. J Neurophysiol. 110, 141-152 (2013).
  26. Nakamura, S., Kimura, F., Sakaguchi, T. Postnatal development of electrical activity in the locus ceruleus. J Neurophysiol. 58, 510-524 (1987).
  27. Harley, C. W., Darby-King, A., McCann, J., McLean, J. H. Beta1-adrenoceptor or alpha1-adrenoceptor activation initiates early odor preference learning in rat pups: support for the mitral cell/cAMP model of odor preference learning. Learn Mem. 13, 8-13 (2006).
  28. Shakhawat, A. M., Harley, C. W., Yuan, Q. Olfactory bulb alpha2-adrenoceptor activation promotes rat pup odor-preference learning via a cAMP-independent mechanism. Learn Mem. 19, 499-502 (2012).
  29. Isaacson, J. S. Odor representations in mammalian cortical circuits. Curr Opin Neurobiol. 20, 328-331 (2010).
  30. Lethbridge, R., Hou, Q., Harley, C. W., Yuan, Q. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One. 7, e35024 (2012).
  31. Yuan, Q., Harley, C. W. What a nostril knows: olfactory nerve-evoked AMPA responses increase while NMDA responses decrease at 24-h post-training for lateralized odor preference memory in neonate rat. Learn Mem. 19, 50-53 (2012).
  32. Schwob, J. E., Price, J. L. The development of axonal connections in the central olfactory system of rats. J Comp Neurol. 223, 177-202 (1984).
  33. Kucharski, D., Hall, W. G. New routes to early memories. Science. 238, 786-788 (1987).
  34. Kucharski, D., Johanson, I. B., Hall, W. G. Unilateral olfactory conditioning in 6-day-old rat pups. Behav Neural Biol. 46, 472-490 (1986).
  35. Cummings, D. M., Henning, H. E., Brunjes, P. C. Olfactory bulb recovery after early sensory deprivation. J Neurosci. 17, 7433-7440 (1997).
  36. Kucharski, D., Hall, W. G. Developmental change in the access to olfactory memories. Behav Neurosci. 102, 340-348 (1988).
  37. Brunjes, P. C. Unilateral odor deprivation: time course of changes in laminar volume. Brain Res Bull. 14, 233-237 (1985).
  38. Kass, M. D., Pottackal, J., Turkel, D. J., McGann, J. P. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb. Chem Senses. 38, 77-89 (2013).
  39. Kim, H. H., Puche, A. C., Margolis, F. L. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex. J Neurosci. 26, 9548-9559 (2006).
  40. Korol, D. L., Brunjes, P. C. Rapid changes in 2-deoxyglucose uptake and amino acid incorporation following unilateral odor deprivation: a laminar analysis. Brain Res Dev Brain Res. 52, 75-84 (1990).
  41. Leung, C. H., Wilson, D. A. Trans-neuronal regulation of cortical apoptosis in the adult rat olfactory system. Brain Res. 984, 182-188 (2003).
check_url/kr/51808?article_type=t

Play Video

Cite This Article
Fontaine, C. J., Mukherjee, B., Morrison, G. L., Yuan, Q. A Lateralized Odor Learning Model in Neonatal Rats for Dissecting Neural Circuitry Underpinning Memory Formation. J. Vis. Exp. (90), e51808, doi:10.3791/51808 (2014).

View Video