Summary

Single-channel Analyse et Imagerie de calcium dans les podocytes des glomérules fraîchement isolés

Published: June 27, 2015
doi:

Summary

Changes in the intracellular calcium levels in the podocytes are one of the most important means to control the filtration function of glomeruli. Here we explain a high-throughput approach that allows detection of real-time calcium handling and single ion channels activity in the podocytes of the freshly isolated glomeruli.

Abstract

Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca2+ concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels.

Introduction

Les reins maintiennent l'équilibre homéostatique pour diverses substances et de réguler le volume sanguin d'une manière qui détermine la pression sanguine totale. Des perturbations dans la filtration rénale, la réabsorption ou la sécrétion d'entraîner ou d'accompagner des états pathologiques, allant de l'hyper ou hypotension pour mettre fin à l'insuffisance rénale qui nécessite éventuellement une transplantation rénale. L'unité de filtration rénale (glomérule) se compose de trois couches – l'endothélium capillaire, la membrane basale et une couche mono-cellulaire des cellules épithéliales – podocytes, qui jouent un rôle majeur dans le maintien de l'intégrité et de la fonction 1 fente diaphragme. Dysfonction dans le filtre glomérulaire provoque une perte urinaire à perméabilité sélective de macromolécules, telles que la protéinurie. Différents agents peuvent affecter la structure des podocytes et leurs procédés de pied, qui déterminent l'intégrité de la barrière de filtration de glomérules.

Les podocytes sont impliqués dans le maintien de la glomfonction de filtration Eruli. Il a été établi que la manipulation de calcium impropre à l'podocytes conduit à une lésion de la cellule et joue un rôle important dans la progression de diverses formes de néphropathies 2,3. Par conséquent, le développement d'un modèle qui permet de mesure directe des changements de concentration de calcium intracellulaire sera déterminante pour les études de la fonction des podocytes. Glomérules isolés ont été précédemment utilisés dans de nombreuses études, y compris une mesure du coefficient de réflexion albumine change 4 et l'évaluation des courants cellulaires intégraux dans les cellules entières électrophysiologiques mesures de patch-clamp 5,6. Dans le présent article, nous décrivons le protocole qui permet au chercheur de mesurer intracellulaires changements de concentration de calcium en réponse aux demandes d'agents pharmacologiques, estimer les niveaux de calcium dans les cellules basales, et d'évaluer l'activité des particuliers canaux calciques. Mesures de la concentration de calcium Ratometric et patch-clamp electrophysiology ont été utilisés pour déterminer respectivement des changements dans la concentration de calcium intracellulaire au sein de l'activité de canal et podocytes.

Protocol

L'utilisation et le bien-être des animaux devraient adhérer à la NIH Guide pour le soin et l'utilisation des animaux de laboratoire suivant les protocoles examinés et approuvés par le Comité de protection des animaux et l'utilisation institutionnelle (IACUC). 1. Kidney Flush Utiliser 8 à 12 semaines vieux rat mâle (suggéré est une souche Sprague Dawley, mais d'autres souches d'âge et sexe différent peuvent être utilisés avec les modifications appr…

Representative Results

Ici, nous avons abordé le problème de la mesure des changements de courte durée dans les niveaux de calcium dans les podocytes. La figure 1 montre une représentation schématique du protocole expérimental conçu pour effectuer l'imagerie haute résolution fluorescence confocale en temps réel et des enregistrements individuels de l'activité des canaux ioniques dans les podocytes de la fraîchement glomérules isolés de rongeurs. Brièvement, après le rat est anesthésié, les reins doive…

Discussion

L'approche décrite ici permet l'analyse de manipulation de calcium par les podocytes des glomérules chez les rongeurs. Cette technique permet l'application de patch-clamp électrophysiologie à canal unique et imagerie confocale à fluorescence ratiométrique. Cependant, les deux approches peuvent être utilisés séparément, sur leur propre. Le protocole proposé comporte plusieurs étapes relativement simples, y compris 1) Kidney Flush; 2) l'isolement des glomérules par tamisage différentiel; 3) e…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier Glen Slocum (Medical College of Wisconsin) et Colleen A. Lavin (Nikon Instruments, Inc.) pour une excellente assistance technique avec des expériences de microscopie. Gregory Blass est reconnu pour la relecture critique du manuscrit. Cette recherche a été financée par les Instituts nationaux de la santé HL108880 de subvention et American Diabetes Association accorder 1-15-BS-172 (AS), et Ben J. Lipps bourse de recherche de l'American Society of Nephrology (DVI).

Materials

Fluo4 AM Life Technologies F14217 500µl in DMSO
FuraRed AM Life Technologies F-3020
Poly-L-lysine Sigma-Aldrich P4707
Pluronic acid Sigma-Aldrich F-68  solution
Ionomycin Sigma-Aldrich I3909-1ML
Tube rotator Miltenyi Biotec GmbH 130-090-753 Germany
Nikon confocal microscope (inverted) Nikon Nikon A1R  Laser exitation 488nm. Emission filters 500-550nm and 570-620nm
Objective Nikon Plan Apo 60x/NA 1.4 Oil
Cover Glass Thermo Scientific 6661B52
High vacuum grease Dow Corning Silicone Compound
Software Nikon Nikon NIS-Elements 
Recording/perfusion chamber Warner Instruments RC-26
Patch Clamp amplifier Molecular Devices MultiClamp 700B
Data Acquisition System Molecular Devices Digidata 1440A Axon Digidata® System
Low Pass Filter Warner Instruments LPF-8 8 pole Bessel
Borosilicate glass capillaries World Precision Instruments 1B150F-4
Micropipette Puller Sutter Instrument Co P-97 Flaming/Brown type micropipette puller
Microforge Narishige MF-830 Japan
Motorized Micromanipulator Sutter Instrument Co MP-225
Inverted microscope Nikon Eclipse Ti
Microvibration isolation table TMC equipped with Faraday cage
Multichannel valve perfusion system AutoMake Scientific Valve Bank II
Recording/perfusion chamber Warner Instruments RC-26
Software Molecular Devices pClamp 10 . 2
Nicardipine Sigma-Aldrich N7510
Iberiotoxin Sigma I5904-5UG
Niflumic acid Sigma-Aldrich N0630
DIDS Sigma-Aldrich D3514-25MG
TEA chloride Tocris T2265
RPMI 1640 Life Technologies 11835030 without antibiotics
BSA Sigma-Aldrich A8327 30% albumin solution
Temperature controlled surgical table  MCW core for rodents
Steel sieves: #100 (150 μm), 140 (106 μm)
Gilson, Inc  SIEVE 3 SS FH NO200 Fisher Sci 50-871-316
Gilson, Inc  SIEVE 3 SS FH NO270 Fisher Sci 50-871-318
Gilson, Inc  SIEVE 3 SS FH NO400 Fisher Sci 50-871-320
 mesh 200  Sigma-Aldrich s4145 screen for CD-1
Binocular microscope Nikon Eclipse TS100
Binocular microscope Nikon SMZ745
Syringe pump-based perfusion system Harvard Apparatus
polyethylene tubing Sigma-Aldrich PE50
Isofluorane anesthesia http://www.vetequip.com/ 911103
Other basic reagents Sigma-Aldrich

References

  1. Machuca, E., Benoit, G., Antignac, C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum. Mol. Genet. 18, R185-R194 (2009).
  2. Haraldsson, B., Nystrom, J., Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451-487 (2008).
  3. Patrakka, J., Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463-468 (2009).
  4. Savin, V. J., Sharma, R., Lovell, H. B., Welling, D. J. Measurement of albumin reflection coefficient with isolated rat glomeruli. J. Am. Soc. Nephrol. 3, 1260-1269 (1992).
  5. Gloy, J., et al. Angiotensin II depolarizes podocytes in the intact glomerulus of the Rat. J. Clin. Invest. 99, 2772-2781 (1997).
  6. Nitschke, R., et al. Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. Kidney Int. 57, 41-49 (2000).
  7. Ilatovskaya, D., Staruschenko, A. Single-channel analysis of TRPC channels in the podocytes of freshly isolated glomeruli. Methods Mol Biol. 998, 355-369 (2013).
  8. Snitsarev, V. A., McNulty, T. J., Taylor, C. W. Endogenous heavy metal ions perturb fura-2 measurements of basal and hormone-evoked Ca2+ signals. Biophys. J. 71, 1048-1056 (1996).
  9. Fukuda, A., Fujimoto, S., Iwatsubo, S., Kawachi, H., Kitamura, K. Effects of mineralocorticoid and angiotensin II receptor blockers on proteinuria and glomerular podocyte protein expression in a model of minimal change nephrotic syndrome. Nephrology (Carlton). 15, 321-326 (2010).
  10. Abramowitz, J., Birnbaumer, L. Physiology and pathophysiology of canonical transient receptor potential channels). FASEB J. 23, 297-328 (2009).
  11. Heeringa, S. F., et al. A novel TRPC6 mutation that causes childhood FSGS. PLoS ONE. 4, e7771 (2009).
  12. Zhang, X., Song, Z., Guo, Y., Zhou, M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol. Cell. Biochem. 399, 155-165 (2015).
  13. Bohrer, M. P., et al. Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules. J. Clin. Invest. 60, 152-161 (1977).
  14. Olson, J. L., Rennke, H. G., Venkatachalam, M. A. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab. Invest. 44, 271-279 (1981).
  15. Schiessl, I. M., Castrop, H. Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study. Am J Physiol Renal Physiol. 305, F1189-F1200 (2013).
  16. Ilatovskaya, D. V., Levchenko, V., Ryan, R. P., Cowley, A. W., Staruschenko, A. NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli. Biochem. Biophys. Res. Commun. 408, 242-247 (2011).
  17. Peti-Peterdi, J. Calcium wave of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 291, F473-F480 (2006).
  18. Peti-Peterdi, J., Warnock, D. G., Bell, P. D. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J. Am. Soc. Nephrol. 13, 1131-1135 (2002).
  19. Ilatovskaya, D. V., Palygin, O., Levchenko, V., Staruschenko, A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am. J. Physiol. Cell Physiol. 305, C1050-C1059 (2013).
  20. Ilatovskaya, D. V., et al. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int. 305, C1050-C1059 (2014).
  21. Schaldecker, T., et al. Inhibition of the TRPC5 ion channel protects the kidney filter. J. Clin. Invest. 123, 5298-5309 (2013).
  22. Roshanravan, H., Dryer, S. E. ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am. J. Physiol. Renal Physiol. 306, F1088-F1097 (2014).
  23. Anderson, M., Roshanravan, H., Khine, J., Dryer, S. E. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J. Cell. Physiol. 229, 434-442 (2014).

Play Video

Cite This Article
Ilatovskaya, D. V., Palygin, O., Levchenko, V., Staruschenko, A. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli. J. Vis. Exp. (100), e52850, doi:10.3791/52850 (2015).

View Video