Summary

相关轻型和电子显微镜使用量子点纳米粒子

Published: August 07, 2016
doi:

Summary

A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of epoxy embedded human pathology tissue. We employ commercial antibody fragment conjugated QDs that are visualized by widefield fluorescence light microscopy and transmission electron microscopy.

Abstract

描述了一种方法,即量子点(QD)纳米颗粒可用于使用宽视场荧光光镜和透射电子显微镜(TEM)人体病理学组织相关的免疫细胞化学研究。为了证明我们已经用初级抗体对促生长素抑制素免疫标记人生长抑素瘤的超薄环氧部分的协议,其次是生物素化的二级抗体和可视化用链霉缀585nm的镉 – 硒(硒化镉)量子点(QDs)。的部分被安装在TEM样品网格,然后通过宽视场荧光光镜放置在载玻片观察。光镜显示585纳米量子点标记为明亮的橙色荧光形成肿瘤细胞的细胞质中的颗粒图案。在通过光学显微镜低中档放大率标签图案可以容易地识别和非特异性或背景标记的水平进行评估。这是一个关键步骤,通过TEM免疫标记图案的后续解释和评价形态上下文。然后相同部分被吸干并用TEM观察。 QD探针被视为要附加到包含在个别分泌颗粒无定形物质。图像是从减光镜进行相关性分析可见感兴趣区域(ROI)的同一区域收购。从每个模态对应的图像随后可以被混合以覆盖上相应的区域的TEM超微结构荧光数据。

Introduction

相关轻型和电子显微镜(CLEM)是一种瞬态动态事件1,罕见的事件2,3和复杂系统4的分析功能强大的方法。有可用5取决于问题的许多不同技术的排列被要求然而一个共同要求是一个单一的样品6中相同的结构由多个显微镜模式成像。我们对特殊CLEM方法被用于存档人体病理学组织的研究,用在这里得到了很好的表征,此前公布的7的情况下开发的。其目的是首先从单个活检或手术样品其次最大化的分析数据,以使用荧光光学显微镜帮助阐明在超微结构水平看到的免疫细胞化学标记图案的情况下。

量子点纳米晶体(量子点)提供了一个通用的标记系统ABL的潜力由两个被看作即,荧光光镜和电镜8,9,10,它们的结晶核结构允许不同尺寸的量子点,当通过光波长远离其发射光谱11激发而产生的广泛的荧光发射峰。其原子量是足以产生电子密度是通过透射电子显微镜,扫描透射电子显微镜(STEM)或场发射扫描电子显微镜检测。它们特别适合于免疫细胞化学研究,作为甚至单个量子点可观察到给予每靶分子12 1 QD的最终的灵敏度。此外,根据不同的QD使用它们可具有适于映射的个体元素的签名。

人体病理学样品提供翻译生物医学研究显著的好处。外科组织活检标本例行提交的生物样本库和appropriate道德间隙可以为研究报告进行访问。人体组织不具有可发生在动物或疾病的体外模型相关性或解释的问题。然而,病理学样品的样品制备通常不是最佳的。可存在于组织中的延迟被放置在固定剂,不适当的固定剂使用诸如福尔马林而非戊二醛用于TEM和不适当的采样。 CLEM方法必须优化可用从单个人类样本的诊断和预后信息的可能性。然而,一些新开发的相关的方法,例如那些采用微型单线态氧发生器(miniSOG)不适用于在病理学使用由于需要对标签被遗传编码到感兴趣13的细胞。为此,我们探索了常规准备TEM组织进行相关的免疫细胞化学研究的QD标签的效用。量子点应用于蚀刻环氧树脂或从李丙烯酸树脂切片ghtly醛固定活检组织样品提供从单个样品获得相关荧光光学显微镜和TEM数据的可能性。

Protocol

1.组织剥离和固定 组织剥离 从手术切除肿瘤样品或组织活检解剖组织片。 注意:在此研究中使用的组织进行常规福尔马林固定,但新鲜组织也是合适的。我们选择了确认,并报告通过解剖病理学家以包含常规的组织学染色和抗促生长素抑制素的免疫染色(未示出)之后生长抑素瘤的区域。 使用组织片不高于约1.0 立方毫米大。 ?…

Representative Results

用于该研究的生长抑素瘤样品包括形成具有胶原造口组织混合导管结构的肿瘤细胞。通过荧光光镜,含有丰富的分泌颗粒个体肿瘤细胞表现为生长抑素激素阳性标记。细胞核出现暗孔以最小非特异性标记检测的( 图1)。在低倍率,可变地激烈粒状橙色荧光被认为在这些充分表征的肿瘤细胞的细胞质中。荧光的橙色由QD使用的大小决定。在这项研究中,我们使?…

Discussion

这项研究表明量子点的潜在效用为CLEM研究通用探头。由宽视场光学显微镜观察和透射电镜容易观察时使用的585纳米的纳米QD显示明亮,稳定的荧光。先前的研究由本作者之一显示量子点还适合于超分辨率光镜7。他们的耐光性是延长时间观看和长成像曝光特别有用。量子点也可以被用于以相同的激发波长下不同尺寸的探头的同时发射不同颜色的光谱多路复用免疫组织化学。

<p class="jove_co…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors wish to acknowledge the support of Xiao Juan Wu (Immunohistochemistry Laboratory) and the Department of Anatomical Pathology, Sydney South West Pathology Service (SSWPS), NSW Health Pathology, Liverpool, New South Wales, Australia.

Materials

Sodium cacodylate Proscitech C0205 Harmful chemical
Osmium tetroxide Proscitech C010 Use only in fume hood
Uranyl acetate Univar-Ajax 569 Hazardous chemical
Ethanol 100% Fronine JJ008
Acetone 100% Fronine JJ006
ERL 4221 Proscitech C056
DER 732 Proscitech C047
NSA Proscitech C059
DMAE Proscitech C050
Sodium metaperiodate Analar BDH 10259
anti-somatostatin antibody Dako A0566
Antibody diluent Dako S3022
Qdot 585 Streptavidin Conjugate  Invitrogen Q10113MP
Biotinylated goat anti-rabbit IgG antibody Sigma B7389-1ML
Glutaraldehyde 50% EMS 16320
Normal goat serum Invitrogen PCN5000
PBS "Dulbecco A" Oxoid  BR0014G
BSAc (10%) Aurion 900.022
Parafilm Pechiney PP M
pH indicator strips (pH 2.0 – 9.0) Merck 1.09584.0001
Micromoulds Proscitech RL063
Diamond knife Diatome Ultra 45
Transmission electron microscope FEI Morgagni 268D
Fluorescence light microscope Carl Zeiss Axioscope A1
Grids 300 mesh nickel (thin bar) Agar Scientific G2740N
Ultramicrotome RMC Powertome
TEM camera control software Soft Imaging System AnalySIS Version 3.0
Image processing software Adobe Systems Incorporated Photoshop CS2

References

  1. Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M., Briggs, J. A. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol. 192 (1), 111-119 (2011).
  2. Müller-Reichert, T., Verkade, P. Introduction to correlative light and electron microscopy. Methods Cell Biol. , (2012).
  3. De Boer, P., Hoogenboom, J. P., Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up!. Nat Methods. 12 (6), 503-513 (2015).
  4. Faas, F. G., et al. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. J Struct Biol. 181 (3), 283-290 (2013).
  5. Redemann, S., Müller-Reichert, T. Correlative light and electron microscopy for the analysis of cell division. J Microsc. 251 (2), 109-112 (2013).
  6. Spiegelhalter, C., et al. From dynamic live cell imaging to 3D ultrastructure: novel integrated methods for high pressure freezing and correlative light-electron microscopy. PLoS One. 5 (2), e9014 (2010).
  7. Killingsworth, M. C., Lai, K., Wu, X., Yong, J. L., Lee, C. S. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by widefield epifluorescence, super-resolution light, and immunoelectron microscopy. J Histochem Cytochem. 60 (11), 832-843 (2012).
  8. Nisman, R., Dellaire, G., Ren, Y., Li, R., Bazett-Jones, D. P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem. 52 (1), 13-18 (2004).
  9. Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z., Ellisman, M. H. Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat Methods. 2 (10), 743-749 (2005).
  10. Kuipers, J., de Boer, P., Giepmans, B. N. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling. Exp Cell Res. 337 (2), 202-207 (2015).
  11. Barroso, M. M. Quantum dots in cell biology. J Histochem Cytochem. 59 (3), 237-251 (2011).
  12. Michalet, X., et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 5, 538-544 (2005).
  13. Shu, X., et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues and organisms. PLoS Biol. 9 (4), e1001041 (2011).
  14. Thomas, J. M., Midgley, P. A. High-resolution transmission electron microscopy: the ultimate nanoanalytical technique. Chem Commun. , 1253-1267 (2004).
  15. Loussert Fonta, C., Humbel, B. M. Correlative microscopy. Arch Biochem Biophys. 581, 98-110 (2015).
  16. Marc, R. E., Liu, W. Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses. J Comp Neurol. 425 (4), 560-582 (2000).
  17. Studer, D., Humbel, B. M., Chiquet, M. Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol. 130 (5), 877-889 (2008).
  18. Tokuyasu, K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 12 (4), 381-403 (1980).
  19. Loussert Fonta, C., et al. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning. J Struct Biol. 189 (1), 53-61 (2015).
check_url/kr/54307?article_type=t

Play Video

Cite This Article
Killingsworth, M. C., Bobryshev, Y. V. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles. J. Vis. Exp. (114), e54307, doi:10.3791/54307 (2016).

View Video