Summary

Cefoperazon behandelten Maus-Modell der klinisch relevanten<em> Clostridium difficile</em> Dehnungs R20291

Published: December 10, 2016
doi:

Summary

Dieses Protokoll beschreibt die Cefoperazon Maus – Modell von Clostridium difficile – Infektion (CDI) eine klinisch relevante und genetisch-lenkbar – Stamm verwenden, R20291. Schwerpunkt auf der klinischen Krankheitsüberwachung, C. difficile Bakterien-Enumeration, Toxin Zytotoxizität und histopathologischen Veränderungen im gesamten CDI in einem Mausmodell werden im Protokoll aufgeführt.

Abstract

Clostridium difficile is an anaerobic, gram-positive, spore-forming enteric pathogen that is associated with increasing morbidity and mortality and consequently poses an urgent threat to public health. Recurrence of a C. difficile infection (CDI) after successful treatment with antibiotics is high, occurring in 20-30% of patients, thus necessitating the discovery of novel therapeutics against this pathogen. Current animal models of CDI result in high mortality rates and thus do not approximate the chronic, insidious disease manifestations seen in humans with CDI. To evaluate therapeutics against C. difficile, a mouse model approximating human disease utilizing a clinically-relevant strain is needed. This protocol outlines the cefoperazone mouse model of CDI using a clinically-relevant and genetically-tractable strain, R20291. Techniques for clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol. Compared to other mouse models of CDI, this model is not uniformly lethal at the dose administered, allowing for the observation of a prolonged clinical course of infection concordant with the human disease. Therefore, this cefoperazone mouse model of CDI proves a valuable experimental platform to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.

Introduction

Clostridium difficile ist ein anaerob, grampositive, sporenbildenden Bazillus, der lebensbedrohlichen Durchfall 1 verursacht. C. difficile – Infektion (CDI) ist mit einer erhöhten menschlichen Morbidität und Mortalität und die Ergebnisse in mehr als $ 4,8 Mrd. Kosten für das Gesundheitswesen pro Jahr 1-4 verbunden. Im Jahr 2013, kategorisiert die Centers for Disease Control and Prevention C. difficile als dringende Antibiotikaresistenz Risiko, was darauf hinweist , dass es eine dringende Gefahr für die öffentliche Gesundheit 1 darstellt. Derzeit Antibiotika – Behandlung mit Vancomycin und Metronidazol sind die Standardbehandlung für CDI 5 betrachtet. Leider ist Rezidiv von CDI nach erfolgreicher Behandlung mit Antibiotika hoch, in 20 auftretenden – 2,5-7 30% der Patienten. Deshalb ist die Entdeckung neuer Therapeutika gegen diese magensaftresistente Erreger notwendig. Zur Beurteilung Therapeutika gegen C. difficile, einem Tiermodell der Krankheit beim Menschen in ac annähertlinically relevante Belastung benötigt wird.

Zunächst wurden Koch-Postulate für C. difficile im Jahr 1977 mit einer Clindamycin-behandelten syrischen Hamstermodell 8 etabliert. Dieses Modell wird auch heute noch verwendet auf Pathogenese 9,10 , die Auswirkungen von C. difficile Toxine zu untersuchen. Allerdings CDI im Hamstermodell führt zu einer hohen Sterblichkeit und nicht die chronische heimtückische Krankheit Manifestationen nähern , die bei Menschen mit CDI 10,11 gesehen werden kann. Auf der Grundlage der Zugänglichkeit und Verfügbarkeit von Reagenz murine Plattformen in Forschung, ist ein Mausmodell der CDI relevant.

Im Jahr 2008 wurde mit einem Antibiotikum – Cocktail durch Behandlung von Mäusen eine robuste Mausmodell der CDI etabliert im Trinkwasser (Kanamycin, Gentamicin, Colistin, Metronidazol und Vancomycin) für 3 Tage , gefolgt von einer intraperitonealen Injektion von Clindamycin 12. Dies machte Mäuse anfällig für CDI und schwere Colitis. Abhängening auf der Inokulum Dosis verabreicht werden, können eine Reihe von klinischen Anzeichen und Letalität beobachtet werden dieses Modell. Seit dieser Zeit haben sich verschiedene Antibiotika – Anwendungen untersucht worden, die die murinen Darmmikrobiota verändern, Kolonisationsresistenz bis zu dem Punkt abnimmt , wo C. difficile den Magen – Darm – Trakt besiedeln können ( beschrieben in Best et al. Und Lawley & Young) 13,14.

In jüngster Zeit ein breites Spektrum Cephalosporin, Cefoperazon, rendert in dem Trinkwasser gegeben für 5 oder 10 Tage reproduzierbar Mäuse anfällig für CDI 15. Da die Verabreichung von Cephalosporinen der dritten Generation mit einem erhöhten Risiko von CDI beim Menschen assoziiert sind, reflektiert Verwendung des Cefoperazon Modell genauer natürlich vorkommenden Krankheits 16. Cefoperazon behandelten Mäuse anfällig für C. difficile wurden sowohl mit C. difficile – Sporen und vegetativen Zellen von einer Vielzahl von Stämmen Bereich in Frage gestellt worden klinischenRelevanz und Virulenz 17. Trotz einiger der ursprünglichen Studien C. difficile vegetativen Zellen als infektiöse Form verwendet werden C. difficile – Sporen die wichtigste Übertragungsart 18 betrachtet.

In den letzten zehn Jahren, C. difficile R20291, ein NAP1 / BI / 027 – Stamm hat, entstanden Epidemien von CDI 19,20 verursacht. Wir versuchten , den klinischen Verlauf der Erkrankung zu bestimmen , wann Cefoperazon-behandelten Mäusen mit klinisch relevanten und genetisch tractable C. difficile – Stamm, R20291 herausgefordert wurden. Dieses Protokoll beschreibt die klinischen Verlauf, einschließlich Gewichtsverlust, bakterielle Kolonisation Toxin – Zytotoxizität und histopathologische Veränderungen im Gastrointestinaltrakt von Mäusen , die mit C. difficile – Sporen R20291 in Frage gestellt. Insgesamt erweist sich dieses Mausmodell eine wertvolle experimentelle Plattform für CDI annähert Krankheit beim Menschen zu sein. Dieses gekennzeichnet Mausmodell kann somit genutzt werden, um die Auswirkungen zu beurteilenneuartiger Therapeutika auf der Verbesserung der klinischen Erkrankung und über die Wiederherstellung der Kolonisierung Widerstand gegen C. difficile.

Protocol

Ethische Erklärung: Die Institutional Animal Care und Use Committee (IACUC) an der North Carolina State University College of Veterinary Medicine (NCSU) genehmigt diese Studie. Die NCSU Animal Care und Use Policy gilt Normen und Richtlinien , die in der Tierschutzgesetz und Gesundheitsforschung Extension Act von 1985 Labortieranlagen in NCSU her für die Pflege und Verwendung von Labortieren im Leitfaden auf Richtlinien halten. Das Tiergesundheitsstatus wurden täglich bewertet und sterben…

Representative Results

Während einer repräsentativen Studie, 5 Wochen alte C57BL / 6-WT-Mäuse wurden mit Cefoperazon in ihrem Trinkwasser vorbehandelt (0,5 mg / ml) für 5 Tage und erlaubt eine 2-Tages-auswaschen mit regelmäßigen Trinkwasser. Mäuse wurden mit 10 & sup5 ; Sporen von C. difficile R20291 via Schlundsonde am Tag 0 (1A) herausgefordert. Die Mäuse wurden für 14 Tage für die Gewichtsabnahme und klinischen Zeichen (Lethargie, Appetitlosigkeit, Durchfal…

Discussion

This protocol characterizes the clinical course, including weight loss, bacterial colonization, toxin cytotoxicity, and histopathological changes in the gastrointestinal tract, of antibiotic-treated mice challenged with C. difficile R20291 spores. There are several critical steps within the protocol where attention to detail is essential. Accurate calculation of the C. difficile spore inoculum is critical. This calculation is based on the original C. difficile spore stock enumeration, which sho…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Trevor Lawley at the Wellcome Trust Sanger Institute for C. difficile R20291 spores and James S. Guy at the North Carolina State University College of Veterinary Medicine for Vero cells, both utilized in this manuscript. Animal histopathology was performed in the LCCC Animal Histopathology Core Facility at the University of North Carolina at Chapel Hill, with special assistance from Traci Raley and Amanda Brown. The LCCC Animal Histopathology Core is supported in part by an NCI Center Core Support Grant (2P30CA016086-40) to the UNC Lineberger Comprehensive Cancer Center. We would also like to thank Vincent Young, Anna Seekatz, Jhansi Leslie, and Cassie Schumacher for helpful discussions on the Vero cell cytotoxicity assay protocol. JAW is funded by the Ruth L. Kirschstein National Research Service Award Research Training grant T32OD011130 by NIH. CMT is funded by the career development award in metabolomics grant K01GM109236 by the NIGMS of the NIH.

Materials

#62 Perisept Sporidicial Disinfectant Cleaner  SSS Navigator 48027 This product will require dilution as recommended by the manufacturer
0.22 μm filter Fisherbrand 09-720-3 Alternative to filter plate for indivdiual samples tested in the Vero Cell Assay
0.25% Trypsin-EDTA Gibco 25200-056 Needs to be heated in water bath at 37C prior to use
0.4% Trypan Blue Gibco 15250-061
1% Peniciilin/Streptomycin Gibco 15070-063
10% heat inactivated FBS Gibco 16140-071 Needs to be heated in water bath at 37C prior to use
1ml plastic syringe  BD Medical Supplies 309628
1X PBS Gibco 10010-023
2 ml Micro Centrifuge Screw Cap Corning 430917
96 well cell culture flat bottom plate Costar Corning CL3595
96 well filter plate Millipore MSGVS2210
Adhesive Seal ThermoScientific AB-0558
Bacto Agar Becton Dickinson 214010 Part of TCCFA plates (see below)
Bacto Proteose Peptone Becton Dickinson 211684 Part of TCCFA plates (see below)
Cefoperazone MP Bioworks 199695
Cefoxitine Sigma C47856 Part of TCCFA plates (see below)
Clostridium difficile Antitoxin Kit Tech Labs T5000 Used as control for Vero Cell Assay
Clostridium difficile Toxin A List Biological Labs 152C Positive control for Vero Cell Assay
D-cycloserine Sigma C6880 Part of TCCFA plates (see below)
Distilled Water Gibco 15230
DMEM 1X Media Gibco 11965-092 Needs to be heated in water bath at 37C prior to use
Fructose Fisher L95500 Part of TCCFA plates (see below)
Hemocytometer Bright-Line, Sigma Z359629
KH2PO4 Fisher P285-500 Part of TCCFA plates (see below)
MgSO4 (anhydrous) Sigma M2643 Part of TCCFA plates (see below)
Millex-GS 0.22 μm filter Millex-GS SLGS033SS Filter for TCCFA plates 
Na2HPO4 Sigma S-0876 Part of TCCFA plates (see below)
NaCl Fisher S640-3 Part of TCCFA plates (see below)
Number 10 disposable scalpel blade Miltex, Inc 4-410
PCR Plates Fisherbrand 14230244
Plastic petri dish Kord-Valmark Brand 2900
Sterile plastic L-shaped cell spreader Fisherbrand 14-665-230
Syringe Stepper Dymax Corporation T15469
Taurocholate Sigma T4009 Part of TCCFA plates (see below)
Ultrapure distilled water Invitrogen 10977-015
C57BL/6J Mice The Jackson Laboratory 664 Mice should be 5-8 weeks of age
Olympus BX43F light microscope Olympus Life Science
DP27 camera Olympus Life Science
cellSens Dimension software  Olympus Life Science

References

  1. Lessa, F. C., et al. Burden of Clostridium difficile Infection in the United States. New England Journal of Medicine. 372, 825-834 (2015).
  2. Gerding, D. N., Lessa, F. C. The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin North Am. 29, 37-50 (2015).
  3. Dubberke, E. R., Olsen, M. A. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 55, 88-92 (2012).
  4. Kociolek, L. K., Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Hepatol. , (2016).
  5. Kelly, C. P., LaMont, J. T. Clostridium difficile–more difficult than ever. N Engl J Med. 359, 1932-1940 (2008).
  6. Louie, T. J., et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 364, 422-431 (2011).
  7. Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L., Kasper, D. L. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. The Journal of infectious diseases. 136, 701-705 (1977).
  8. Kelly, M. L., et al. Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection. Anaerobe. , (2016).
  9. Kuehne, S. A., et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. The Journal of infectious diseases. 209, 83-86 (2014).
  10. Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L. Clindamycin-associated colitis in hamsters: protection with vancomycin. Gastroenterology. 73, 772-776 (1977).
  11. Chen, X., et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology. 135, 1984-1992 (2008).
  12. Lawley, T. D., Young, V. B. Murine models to study Clostridium difficile infection and transmission. Anaerobe. 24, 94-97 (2013).
  13. Best, E. L., Freeman, J., Wilcox, M. H. Models for the study of Clostridium difficile infection. Gut Microbes. 3, 145-167 (2012).
  14. Reeves, A. E., et al. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes. 2, 145-158 (2014).
  15. Owens, R. C., Donskey, C. J., Gaynes, R. P., Loo, V. G., Muto, C. A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 46, 19-31 (2008).
  16. Theriot, C. M., et al. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes. 2, 326-334 (2011).
  17. Martin, J. S., Monaghan, T. M., Wilcox, M. H. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. , (2016).
  18. Connor, J. R., Johnson, S., Gerding, D. N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology. 136, 1913-1924 (2009).
  19. He, M., et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 45, 109-113 (2013).
  20. Perez, J., Springthorpe, V. S., Sattar, S. A. Clospore: a liquid medium for producing high titers of semi-purified spores of Clostridium difficile. Journal of AOAC International. 94, 618-626 (2011).
  21. Sorg, J. A., Dineen, S. S. Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol. , (2009).
  22. Edwards, A. N., Suarez, J. M., McBride, S. M. Culturing and maintaining Clostridium difficile in an anaerobic environment. Journal of visualized experiments : JoVE. , e50787 (2013).
  23. George, W. L., Sutter, V. L., Citron, D., Finegold, S. M. Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol. 9, 214-219 (1979).
  24. Knoblaugh, S., Randolph-Habecker, J., Rath, S., Dintzis, S. M. . Comparative Anatomy and Histology. , 15-40 (2012).
  25. Ammerman, N. C., Beier-Sexton, M., Azad, A. F. Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. , (2008).
  26. Theriot, C. M., et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 5, 3114 (2014).
  27. Koenigsknecht, M. J., et al. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun. 83, 934-941 (2015).
  28. Theriot, C., Bowman, A., Young, V. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere. 1, 00045 (2016).
  29. Xiao, L., et al. A catalog of the mouse gut metagenome. Nature biotechnology. 33, 1103-1108 (2015).
  30. Leslie, J. L., et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun. 83, 138-145 (2015).
  31. Stabler, R. A., et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10, 102 (2009).
  32. Valiente, E., Dawson, L. F., Cairns, M. D., Stabler, R. A., Wren, B. W. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. 61, 49-56 (2012).
check_url/kr/54850?article_type=t

Play Video

Cite This Article
Winston, J. A., Thanissery, R., Montgomery, S. A., Theriot, C. M. Cefoperazone-treated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291. J. Vis. Exp. (118), e54850, doi:10.3791/54850 (2016).

View Video