Summary

头孢哌酮治疗小鼠模型的临床相关的<em>艰难梭菌</em>应变R20291

Published: December 10, 2016
doi:

Summary

该协议概述了使用临床相关和转听话应变,R20291 艰难梭菌感染(CDI)的头孢哌酮小鼠模型。临床疾病的监测, 艰难梭菌细菌枚举,毒素的细胞毒作用,并在小鼠模型中在整个CDI病理学改变强调在协议中详述。

Abstract

Clostridium difficile is an anaerobic, gram-positive, spore-forming enteric pathogen that is associated with increasing morbidity and mortality and consequently poses an urgent threat to public health. Recurrence of a C. difficile infection (CDI) after successful treatment with antibiotics is high, occurring in 20-30% of patients, thus necessitating the discovery of novel therapeutics against this pathogen. Current animal models of CDI result in high mortality rates and thus do not approximate the chronic, insidious disease manifestations seen in humans with CDI. To evaluate therapeutics against C. difficile, a mouse model approximating human disease utilizing a clinically-relevant strain is needed. This protocol outlines the cefoperazone mouse model of CDI using a clinically-relevant and genetically-tractable strain, R20291. Techniques for clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol. Compared to other mouse models of CDI, this model is not uniformly lethal at the dose administered, allowing for the observation of a prolonged clinical course of infection concordant with the human disease. Therefore, this cefoperazone mouse model of CDI proves a valuable experimental platform to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.

Introduction

艰难梭菌是一种厌氧,革兰氏阳性,形成孢子的杆菌引起危及生命的腹泻1。 艰难梭菌感染(CDI)与日益增多的人类发病率和死亡率,并导致每年1-4医疗费用相关的超过480十亿$。在2013年,美国疾病控制和预防归类难辨作为一项紧迫抗生素耐药性的风险,这表明它对公众健康的1紧迫的威胁。目前,万古霉素抗生素治疗和甲硝唑被认为是照顾的CDI 5标准。不幸的是,CDI复发成功治疗后用抗生素为高,在20发生-的患者2,5-7 30%。因此,新的治疗剂的发现对这种肠道病原体是必要的。为了评估对难辨梭状芽孢杆菌 ,动物模型近似交流人类疾病治疗需要linically相关的应变。

最初,柯赫氏法则是在1977年用克林霉素治疗的叙利亚仓鼠模型建立8 艰难梭菌 。这种模式是今天仍然利用探讨发病9,10难辨梭状芽孢杆菌毒素的作用。然而,CDI在仓鼠模型导致高死亡率和不近似慢性阴险疾病表现可与CDI 10,11人看到。根据在研究鼠平台的辅助和试剂可用性,CDI的小鼠模型是相关的。

在2008年,CDI的健壮小鼠模型,通过用在饮用水3天之后克林霉素12腹膜内注射抗生素混合物(卡那霉素,庆大霉素,粘菌素,甲硝唑,万古霉素)治疗的小鼠建立的。这种小鼠呈现易受CDI和严重的结肠炎。依靠ING上施用接种的剂量,可以使用该模型被观察到的范围内的临床症状和杀伤力。因为这个时候,各个抗生素疗法已调查了改变的鼠肠道菌群,降低到艰难梭菌可以定植在胃肠道的点定植抗力(在最佳等人审查和罗礼&Young的)13,14。

最近,一种广谱头孢菌素,头孢哌酮,饮用水中的给定的5天或10天重复地呈现小鼠易感CDI 15。由于第三代头孢菌素的管理都与人类的CDI的风险增加,使用头孢哌酮模型更准确地反映自然发生的疾病16。头孢哌酮治疗小鼠容易艰难梭菌受到挑战既艰难梭菌芽孢和范围在临床多种菌株的营养细胞相关性和毒力17。尽管出现了一些利用难辨营养细胞的感染形式的原始研究, 艰难梭菌芽孢被认为是传动装置18的主要方式。

在过去十年中, 艰难梭菌 R20291,一个NAP1 / BI / 027株,已经出现,造成CDI 19,20流行。我们试图确定疾病的临床过程时头孢哌酮处理的小鼠用临床相关和基因-易于处理艰难梭菌菌株,R20291挑战。该协议细节的临床过程,包括体重减轻,细菌定植,毒素的细胞毒性,并与艰难梭菌 R20291孢子攻击的小鼠的胃肠道组织病理学变化。总体而言,这种小鼠模型被证明是CDI近似人类疾病的宝贵的实验平台。此其特征小鼠模型因此可用于评估的影响对临床疾病的改善和关于对艰难梭菌定植抗力的恢复新颖治疗剂。

Protocol

伦理声明: 机构的动物护理和使用委员会(IACUC)的兽医北卡罗莱纳州立大学(NCSU)批准了这项研究。北卡罗莱纳州立大学的动物护理和使用政策适用于在北卡罗莱纳州立大学的1985年实验动物设施动物福利法与健康研究扩展法案规定的标准和准则,坚持以指南为照顾和实验动物使用中规定的准则。动物的健康状态,每天进行评估和垂死的动物被人道地用CO 2窒息,再进行?…

Representative Results

期间的代表性研究中,5周龄的C57BL / 6野生型小鼠用头孢哌酮在其饮用水中(0.5毫克/毫升)预处理5天,并允许一个2天的洗出与普通的饮用水。小鼠用经由在第0天( 图1A)口服强饲法10 5孢子梭状 R20291的挑战。小鼠14天的CDI体重减轻和临床症状(嗜睡,食欲不振,腹泻,和驼背姿势)进行了监测。 C57BL / 6 WT小鼠艰难梭菌 R20291孢子的挑战导?…

Discussion

This protocol characterizes the clinical course, including weight loss, bacterial colonization, toxin cytotoxicity, and histopathological changes in the gastrointestinal tract, of antibiotic-treated mice challenged with C. difficile R20291 spores. There are several critical steps within the protocol where attention to detail is essential. Accurate calculation of the C. difficile spore inoculum is critical. This calculation is based on the original C. difficile spore stock enumeration, which sho…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Trevor Lawley at the Wellcome Trust Sanger Institute for C. difficile R20291 spores and James S. Guy at the North Carolina State University College of Veterinary Medicine for Vero cells, both utilized in this manuscript. Animal histopathology was performed in the LCCC Animal Histopathology Core Facility at the University of North Carolina at Chapel Hill, with special assistance from Traci Raley and Amanda Brown. The LCCC Animal Histopathology Core is supported in part by an NCI Center Core Support Grant (2P30CA016086-40) to the UNC Lineberger Comprehensive Cancer Center. We would also like to thank Vincent Young, Anna Seekatz, Jhansi Leslie, and Cassie Schumacher for helpful discussions on the Vero cell cytotoxicity assay protocol. JAW is funded by the Ruth L. Kirschstein National Research Service Award Research Training grant T32OD011130 by NIH. CMT is funded by the career development award in metabolomics grant K01GM109236 by the NIGMS of the NIH.

Materials

#62 Perisept Sporidicial Disinfectant Cleaner  SSS Navigator 48027 This product will require dilution as recommended by the manufacturer
0.22 μm filter Fisherbrand 09-720-3 Alternative to filter plate for indivdiual samples tested in the Vero Cell Assay
0.25% Trypsin-EDTA Gibco 25200-056 Needs to be heated in water bath at 37C prior to use
0.4% Trypan Blue Gibco 15250-061
1% Peniciilin/Streptomycin Gibco 15070-063
10% heat inactivated FBS Gibco 16140-071 Needs to be heated in water bath at 37C prior to use
1ml plastic syringe  BD Medical Supplies 309628
1X PBS Gibco 10010-023
2 ml Micro Centrifuge Screw Cap Corning 430917
96 well cell culture flat bottom plate Costar Corning CL3595
96 well filter plate Millipore MSGVS2210
Adhesive Seal ThermoScientific AB-0558
Bacto Agar Becton Dickinson 214010 Part of TCCFA plates (see below)
Bacto Proteose Peptone Becton Dickinson 211684 Part of TCCFA plates (see below)
Cefoperazone MP Bioworks 199695
Cefoxitine Sigma C47856 Part of TCCFA plates (see below)
Clostridium difficile Antitoxin Kit Tech Labs T5000 Used as control for Vero Cell Assay
Clostridium difficile Toxin A List Biological Labs 152C Positive control for Vero Cell Assay
D-cycloserine Sigma C6880 Part of TCCFA plates (see below)
Distilled Water Gibco 15230
DMEM 1X Media Gibco 11965-092 Needs to be heated in water bath at 37C prior to use
Fructose Fisher L95500 Part of TCCFA plates (see below)
Hemocytometer Bright-Line, Sigma Z359629
KH2PO4 Fisher P285-500 Part of TCCFA plates (see below)
MgSO4 (anhydrous) Sigma M2643 Part of TCCFA plates (see below)
Millex-GS 0.22 μm filter Millex-GS SLGS033SS Filter for TCCFA plates 
Na2HPO4 Sigma S-0876 Part of TCCFA plates (see below)
NaCl Fisher S640-3 Part of TCCFA plates (see below)
Number 10 disposable scalpel blade Miltex, Inc 4-410
PCR Plates Fisherbrand 14230244
Plastic petri dish Kord-Valmark Brand 2900
Sterile plastic L-shaped cell spreader Fisherbrand 14-665-230
Syringe Stepper Dymax Corporation T15469
Taurocholate Sigma T4009 Part of TCCFA plates (see below)
Ultrapure distilled water Invitrogen 10977-015
C57BL/6J Mice The Jackson Laboratory 664 Mice should be 5-8 weeks of age
Olympus BX43F light microscope Olympus Life Science
DP27 camera Olympus Life Science
cellSens Dimension software  Olympus Life Science

References

  1. Lessa, F. C., et al. Burden of Clostridium difficile Infection in the United States. New England Journal of Medicine. 372, 825-834 (2015).
  2. Gerding, D. N., Lessa, F. C. The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin North Am. 29, 37-50 (2015).
  3. Dubberke, E. R., Olsen, M. A. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 55, 88-92 (2012).
  4. Kociolek, L. K., Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Hepatol. , (2016).
  5. Kelly, C. P., LaMont, J. T. Clostridium difficile–more difficult than ever. N Engl J Med. 359, 1932-1940 (2008).
  6. Louie, T. J., et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 364, 422-431 (2011).
  7. Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L., Kasper, D. L. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. The Journal of infectious diseases. 136, 701-705 (1977).
  8. Kelly, M. L., et al. Improving the reproducibility of the NAP1/B1/027 epidemic strain R20291 in the hamster model of infection. Anaerobe. , (2016).
  9. Kuehne, S. A., et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. The Journal of infectious diseases. 209, 83-86 (2014).
  10. Bartlett, J. G., Onderdonk, A. B., Cisneros, R. L. Clindamycin-associated colitis in hamsters: protection with vancomycin. Gastroenterology. 73, 772-776 (1977).
  11. Chen, X., et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology. 135, 1984-1992 (2008).
  12. Lawley, T. D., Young, V. B. Murine models to study Clostridium difficile infection and transmission. Anaerobe. 24, 94-97 (2013).
  13. Best, E. L., Freeman, J., Wilcox, M. H. Models for the study of Clostridium difficile infection. Gut Microbes. 3, 145-167 (2012).
  14. Reeves, A. E., et al. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes. 2, 145-158 (2014).
  15. Owens, R. C., Donskey, C. J., Gaynes, R. P., Loo, V. G., Muto, C. A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 46, 19-31 (2008).
  16. Theriot, C. M., et al. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes. 2, 326-334 (2011).
  17. Martin, J. S., Monaghan, T. M., Wilcox, M. H. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. , (2016).
  18. Connor, J. R., Johnson, S., Gerding, D. N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology. 136, 1913-1924 (2009).
  19. He, M., et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 45, 109-113 (2013).
  20. Perez, J., Springthorpe, V. S., Sattar, S. A. Clospore: a liquid medium for producing high titers of semi-purified spores of Clostridium difficile. Journal of AOAC International. 94, 618-626 (2011).
  21. Sorg, J. A., Dineen, S. S. Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol. , (2009).
  22. Edwards, A. N., Suarez, J. M., McBride, S. M. Culturing and maintaining Clostridium difficile in an anaerobic environment. Journal of visualized experiments : JoVE. , e50787 (2013).
  23. George, W. L., Sutter, V. L., Citron, D., Finegold, S. M. Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol. 9, 214-219 (1979).
  24. Knoblaugh, S., Randolph-Habecker, J., Rath, S., Dintzis, S. M. . Comparative Anatomy and Histology. , 15-40 (2012).
  25. Ammerman, N. C., Beier-Sexton, M., Azad, A. F. Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. , (2008).
  26. Theriot, C. M., et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 5, 3114 (2014).
  27. Koenigsknecht, M. J., et al. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun. 83, 934-941 (2015).
  28. Theriot, C., Bowman, A., Young, V. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere. 1, 00045 (2016).
  29. Xiao, L., et al. A catalog of the mouse gut metagenome. Nature biotechnology. 33, 1103-1108 (2015).
  30. Leslie, J. L., et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun. 83, 138-145 (2015).
  31. Stabler, R. A., et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10, 102 (2009).
  32. Valiente, E., Dawson, L. F., Cairns, M. D., Stabler, R. A., Wren, B. W. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. 61, 49-56 (2012).
check_url/kr/54850?article_type=t

Play Video

Cite This Article
Winston, J. A., Thanissery, R., Montgomery, S. A., Theriot, C. M. Cefoperazone-treated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291. J. Vis. Exp. (118), e54850, doi:10.3791/54850 (2016).

View Video