Summary

Een Ex vivo Assay to Study Candida albicans Hyphal Morphogenesis in het maag-darmkanaal

Published: July 01, 2020
doi:

Summary

De ex vivo test beschreven in deze studie met behulp van gut homogenaat extracten en immunofluorescentie kleuring vertegenwoordigt een nieuwe methode om de hyphal morfogenese van Candida albicans in de GI-darmkanaal te onderzoeken. Deze methode kan worden gebruikt om de milieusignalen te onderzoeken die morfogenetische overgang in de darm regelen.

Abstract

Candida albicans hyphalemorfogenese in het maag-darmkanaal (GI) wordt strak gecontroleerd door verschillende milieusignalen, en speelt een belangrijke rol in de verspreiding en pathogenese van deze opportunistische schimmelpathover. Echter, methoden om schimmelhyphae visualiseren in de GI tract in vivo zijn uitdagend die het begrip van milieusignalen beperkt bij het beheersen van dit morfogenese proces. Het hier beschreven protocol toont een nieuwe ex vivo methode voor visualisatie van hyphal morfogenese in darmhomogenaat extracten. Met behulp van een ex vivo test, deze studie toont aan dat cecal inhoud van antibiotica behandelde muizen, maar niet van onbehandelde controle muizen, bevorderen C. albicans hyphal morfogenese in de darminhoud. Verder, het toevoegen van terug specifieke groepen van darmmetabolieten aan de cecal inhoud van met antibiotica behandelde muizen differentieel reguleert hyphalfogenese ex vivo. Samen vertegenwoordigt dit protocol een nieuwe methode om de milieusignalen te identificeren en te onderzoeken die C. albicans hyphal morfogenese in het GI-kanaal controleren.

Introduction

Candida albicans is een opportunistische, polymorfe schimmelpathiek die normaal commensal is, maar een morfologische verandering kan ondergaan in een virulente vorm die levensbedreigende infecties kan veroorzaken bij immuungecompromitteerde personen1,2,3,4,5,6,7,8,9,10,11,12,13. C. albicans is een belangrijke oorzaak van systemische nosocomiale infecties, met een sterftecijfer van 40\u201260% zelfs met schimmeldodende behandeling2,14,15. Hoewel C. albicans zich in verschillende gastheerniches bevindt, waaronder het vrouwelijke voortplantingssysteem16,17,de mondholte van gezonde individuen18 en het maag-darmkanaal19,20, is het merendeel van de systemische infecties afkomstig van het GI-darmkanaal en bovendien, de bron van systemische infectie wordt vaak bevestigd als het GI-kanaal21,22,23,24,25,26,27,28,29,30,31,32,33,34. C. albicans pathogeniteit in het GI-darmkanaal wordt beïnvloed door een breed scala van factoren; een belangrijk kenmerk dat nodig is voor virulentie is echter de overgang van een gistcelmorfologie naar een virulente hyphaltecelmorfologie35,36,37,38,39,40,41,42,43,44. C. albicans gehechtheid en verspreiding van het GI-darmkanaal tijdens infectie wordt sterk geassocieerd met zijn vermogen om over te stappen van een commensale gist in virulente hyphae, waardoor de schimmels invasieve ziekte44,45,46,47,48,49,50,51,52,53kunnen veroorzaken .

Een verscheidenheid van factoren in de darm, met inbegrip van n-acetylglucosamine, reguleren hyphal vorming door C. albicans. Daarom is het van cruciaal belang om de kloof in kennis over de hyphalemorfose van deze schimmelpathogenese in het GI-kanaal54,55,56teverkleinen . Recent bewijs wijst erop dat verschillende darmmetabolieten de hyphalemorfogenese van C. albicans in vitro57,58,59,60differentieel controleren . Echter, technische beperkingen presenteren problemen bij een poging om C. albicans hyphae vorming studie in in vivo darmmonsters, met name kleuring gist en hyphae cellen en kwantitatieve analyse van hyphal ontwikkeling. Om C. albicans hyphale morfogenese in het GI-kanaal te begrijpen, werd een ex vivo-methode ontwikkeld met behulp van oplosbare extracten van gehomogeniseerd darmgehalte van muizen om het effect van metabolieten op schimmelhyphale morfogenese te bestuderen. Gebruikmakend van darmmonsters van muizen die resistent zijn en gevoelig zijn voor C. albicans GI-infectie, zal deze methode helpen om het effect van metabolieten, antibiotica en xenobiotica op schimmelhyphale morfogenese in het GI-darmkanaal te identificeren en te bestuderen.

Protocol

Alle dierprotocollen werden goedgekeurd door midwestern University Institutional Animal Care and Use Committee (IACUC) zoals beschreven vóór57. De Institutional Animal Care and Use Committee van de Midwestern University keurde deze studie onder MWU IACUC Protocol #2894. Het MWU-beleid voor dierverzorging volgt het Beleid van de Ggd voor humane zorg en gebruik van proefdieren en het beleid dat is vastgelegd in de Wet dierenwelzijn (AWA). 1. Muizen bestuderen standaardpro…

Representative Results

Deze resultaten samen met eerdere bevindingen uit het Thangamani laboratorium60 geven aan dat wanneer C. albicans wordt geteeld ex vivo in gut homogenaat extracten uit de maag, dunne darmen en dikke darmen van onbehandelde controle en antibiotica behandelde muizen, C. albicans ontwikkelt zich over het algemeen met een gist morfologie (Figuur 1B). Echter, wanneer geteeld in het cecal extract van met antibiotica behandelde muizen, C. albicans …

Discussion

De hier beschreven methode presenteert een nieuwe manier om het effect van antibiotica, dieet, xenobiotische en therapeutische effecten op C. albicans hyphalmorphogenese in het GI-kanaal te onderzoeken. Aangezien de meeste systemische infecties afkomstig zijn van het GI-kanaal21,22,23,24,25,26,<sup class="…

Disclosures

The authors have nothing to disclose.

Acknowledgements

De auteurs erkennen middelen en ondersteuning van Midwestern University Cellular and Molecular Core Research faciliteit.

Materials

1 – 10 µL Pipet Tips Fisher Scientific 02-707-454 Misc
100 – 1000 µL Pipet Tips Fisher Scientific 02-707-400 Misc
20 – 200 µL Pipet Tips Fisher Scientific 02-707-451 Misc
2-methylbutyric acid Sigma 193070-25G hyphal-inhibitory compound
488 goat anti-rabbit IgG Invitrogen (Fisher) A11008 IF Staining secondary ab
Agar Fisher BP1423-500 YPD agar component
Automated Imaging Microscope Keyence BZX700
Candida Albicans Antibody Invitrogen (Fisher) PA1-27158 IF Staining primary ab
cefoperazone Cayman 16113 antibiotic
deoxycholic acid Sigma 30960 hyphal-inhibitory compound
D-Glucose Fisher D16-500 hyphal-promoting compound
forceps Fisher 08-885
lactic acid Alfa Aesar AAAL13242-06 hyphal-inhibitory compound
lithocholic acid Sigma L6250-10G hyphal-inhibitory compound
palmitic acid Sigma P5585-10G hyphal-inhibitory compound
Paraformaldehyde Alfa Aesar A11313 IF Staining fixative
Phosphate-buffered saline (PBS), 10x Alfa Aesar J62692 PBS component
p-tolylacetic acid SCBT sc-257959 hyphal-inhibitory compound
sebacic acid Sigma 283258-250G hyphal-inhibitory compound
sharp ended scissors Fisher 28301
sterile Milli-Q water N/A N/A Misc
YPD Broth BD Biosciences 242810 YPD agar component

References

  1. Huffnagle, G. B., Noverr, M. C. The emerging world of the fungal microbiome. Trends in Microbiology. 21 (7), 334-341 (2013).
  2. Wisplinghoff, H., et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases. 39 (3), 309-317 (2004).
  3. Hajjeh, R. A., et al. Incidence of Bloodstream Infections Due to Candida Species and In Vitro Susceptibilities of Isolates Collected from 1998 to 2000 in a Population-based Active Surveillance Program. Journal of Clinical Microbiology. 42 (4), 1519-1527 (2004).
  4. Lockhart, S. R., et al. Species Identification and Antifungal Susceptibility Testing of Candida Bloodstream Isolates from Population-Based Surveillance Studies in Two U.S. Cities from 2008 to 2011. Journal of Clinical Microbiology. 50 (11), 3435-3442 (2012).
  5. Pfaller, M., et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance(R)) registry, 2004-2008. Diagnostic Microbiology and Infectious Disease. 74 (4), 323-331 (2012).
  6. Angarone, M. Fungal infections in cancer patients. Cancer Treatment and Research. 161, 129-155 (2014).
  7. Brown, G. D., et al. Hidden killers: human fungal infections. Science Translational Medicine. 4 (165), 113 (2012).
  8. Calton, E. A., et al. Invasive bacterial and fungal infections in paediatric patients with cancer: incidence, risk factors, aetiology and outcomes in a UK regional cohort 2009-2011. Pediatric Blood & Cancer. 61 (7), 1239-1245 (2014).
  9. Carter, J. H., et al. Medical management of invasive fungal infections of the central nervous system in pediatric cancer patients. Pediatric Blood & Cancer. 62 (6), 1095-1098 (2015).
  10. Low, C. Y., Rotstein, C. Emerging fungal infections in immunocompromised patients. F1000 Medicine Reports. 3, 14 (2011).
  11. Mousset, S., et al. Treatment of invasive fungal infections in cancer patients-updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Annals of Hematology. 93 (1), 13-32 (2014).
  12. Perfect, J. R., Hachem, R., Wingard, J. R. Update on epidemiology of and preventive strategies for invasive fungal infections in cancer patients. Clinical Infectious Diseases. 59, 352-355 (2014).
  13. Sipsas, N. V., Kontoyiannis, D. P. Invasive fungal infections in patients with cancer in the Intensive Care Unit. International Journal of Antimicrobial Agents. 39 (6), 464-471 (2012).
  14. Falagas, M. E., Apostolou, K. E., Pappas, V. D. Attributable mortality of candidemia: a systematic review of matched cohort and case-control studies. European Journal of Clinical Microbiology and Infectious Diseases. 25 (7), 419-425 (2006).
  15. Chi, H. W., et al. Candida albicans versus non-albicans bloodstream infections: the comparison of risk factors and outcome. Journal of Microbiology, Immunology and Infection. 44 (5), 369-375 (2011).
  16. Drell, T., et al. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One. 8 (1), 54379 (2013).
  17. Merenstein, D., et al. Colonization by Candida species of the oral and vaginal mucosa in HIV-infected and noninfected women. AIDS Research and Human Retroviruses. 29 (1), 30-34 (2013).
  18. Ghannoum, M. A., et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathogens. 6 (1), 1000713 (2010).
  19. Hoffmann, C., et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 8 (6), 66019 (2013).
  20. Noble, S. M., Gianetti, B. A., Witchley, J. N. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews Microbiology. 15 (2), 96-108 (2017).
  21. Samonis, G., et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrobial Agents and Chemotherapy. 37 (1), 51-53 (1993).
  22. Sahni, V., et al. Candidemia–an under-recognized nosocomial infection in Indian hospitals. The Journal of the Association of Physicians of India. 53, 607-611 (2005).
  23. Meijer-Severs, G. J., Joshi, J. H. The effect of new broad-spectrum antibiotics on faecal flora of cancer patients. Journal of Antimicrobial Chemotherapy. 24 (4), 605-613 (1989).
  24. Kennedy, M. J., Volz, P. A., Edwards, C. A., Yancey, R. J. Mechanisms of association of Candida albicans with intestinal mucosa. Journal of Medical Microbiology. 24 (4), 333-341 (1987).
  25. Miranda, L. N., et al. Candida colonisation as a source for candidaemia. Journal of Hospital Infections. 72 (1), 9-16 (2009).
  26. Nucci, M., Anaissie, E. Revisiting the source of candidemia: skin or gut. Clinical Infectious Diseases. 33 (12), 1959-1967 (2001).
  27. Raponi, G., Visconti, V., Brunetti, G., Ghezzi, M. C. Clostridium difficile infection and Candida colonization of the gut: is there a correlation. Clinical Infectious Diseases. 59 (11), 1648-1649 (2014).
  28. Guastalegname, M., Russo, A., Falcone, M., Giuliano, S., Venditti, M. Candidemia subsequent to severe infection due to Clostridium difficile: is there a link. Clinical Infectious Diseases. 57 (5), 772-774 (2013).
  29. Nerandzic, M. M., Mullane, K., Miller, M. A., Babakhani, F., Donskey, C. J. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clinical Infectious Diseases. 55, 121-126 (2012).
  30. Krause, R., Krejs, G. J., Wenisch, C., Reisinger, E. C. Elevated fecal Candida counts in patients with antibiotic-associated diarrhea: role of soluble fecal substances. Clinical and Diagnostic Laboratory Immunology. 10 (1), 167-168 (2003).
  31. Krause, R., et al. Role of Candida in antibiotic-associated diarrhea. The Journal of Infectious Diseases. 184 (8), 1065-1069 (2001).
  32. Zuo, T., et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nature Communications. 9 (1), 3663 (2018).
  33. Delaloye, J., Calandra, T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 5 (1), 161-169 (2014).
  34. Cole, G. T., Halawa, A. A., Anaissie, E. J. The role of the gastrointestinal tract in hematogenous candidiasis: from the laboratory to the bedside. Clinical Infectious Diseases. 22, 73-88 (1996).
  35. Lo, H. J., et al. Nonfilamentous C. albicans mutants are avirulent. Cell. 90 (5), 939-949 (1997).
  36. Gale, C. A., et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science. 279 (5355), 1355-1358 (1998).
  37. Bendel, C. M., et al. Systemic infection following intravenous inoculation of mice with Candida albicans int1 mutant strains. Molecular genetics and metabolism. 67 (4), 343-351 (1999).
  38. Toenjes, K. A., et al. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrobial agents and chemotherapy. 49 (3), 963-972 (2005).
  39. Carlisle, P. L., et al. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proceedings of the National Academy of Sciences. 106 (2), 599-604 (2009).
  40. Fazly, A., et al. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proceedings of the National Academy of Sciences. 110 (33), 13594-13599 (2013).
  41. Pande, K., Chen, C., Noble, S. M. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nature genetics. 45 (9), 1088 (2013).
  42. Bar-Yosef, H., Gonzalez, N. V., Ben-Aroya, S., Kron, S. J., Kornitzer, D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Scientific reports. 7 (1), 5692 (2017).
  43. Mendelsohn, S., Pinsky, M., Weissman, Z., Kornitzer, D. Regulation of the Candida albicans hypha-inducing transcription factor Ume6 by the CDK1 cyclins Cln3 and Hgc1. mSphere. 2 (2), 00248 (2017).
  44. Vila, T., et al. Targeting Candida albicans filamentation for antifungal drug development. Virulence. 8 (2), 150-158 (2017).
  45. Pande, K., Chen, C., Noble, S. M. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nature Genetics. 45 (9), 1088-1091 (2013).
  46. Lo, H. J., et al. Nonfilamentous C. albicans mutants are avirulent. Cell. 90 (5), 939-949 (1997).
  47. Bar-Yosef, H., Vivanco Gonzalez, N., Ben-Aroya, S., Kron, S. J., Kornitzer, D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Scientific Reports. 7 (1), 5692 (2017).
  48. Carlisle, P. L., et al. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proceedings of the National Academy of Sciences of the United States of America. 106 (2), 599-604 (2009).
  49. Mendelsohn, S., Pinsky, M., Weissman, Z., Kornitzer, D. Regulation of the Candida albicans Hypha-Inducing Transcription Factor Ume6 by the CDK1 Cyclins Cln3 and Hgc1. mSphere. 2 (2), (2017).
  50. Bendel, C. M., et al. Effects of Alteration of the Candida albicans Gene INT1 on Cecal Colonization in Orally Innoculated Mice. Pediatric Research. 45, 156 (1999).
  51. Gale, C. A., et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science. 279 (5355), 1355-1358 (1998).
  52. Toenjes, K. A., et al. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrobial Agents and Chemotherapy. 49 (3), 963-972 (2005).
  53. Fazly, A., et al. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America. 110 (33), 13594-13599 (2013).
  54. Naseem, S., Gunasekera, A., Araya, E., Konopka, J. B. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. Journal of Biological Chemistry. 286 (33), 28671-28680 (2011).
  55. Piispanen, A. E., Hogan, D. A. PEPped up: induction of Candida albicans virulence by bacterial cell wall fragments. Cell Host & Microbe. 4 (1), 1-2 (2008).
  56. Xu, X. L., et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host & Microbe. 4 (1), 28-39 (2008).
  57. Guinan, J., Thangamani, S. Antibiotic-induced alterations in taurocholic acid levels promote gastrointestinal colonization of Candida albicans. FEMS microbiology letters. 365 (18), (2018).
  58. Guinan, J., Villa, P., Thangamani, S. Secondary bile acids inhibit Candida albicans growth and morphogenesis. Pathogens and disease. 76 (3), (2018).
  59. Guinan, J., Wang, S., Hazbun, T. R., Yadav, H., Thangamani, S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Scientific Reports. 9 (1), 1-11 (2019).
  60. Gutierrez, D., et al. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS microbiology ecology. 96 (1), 187 (2020).
  61. Witchley, J. N., et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host & Microbe. 25 (3), 432-443 (2019).
  62. Witchley, J. N., Penumetcha, P. M., Noble, S. M. Visualization of Candida albicans in the Murine Gastrointestinal Tract Using Fluorescent In Situ Hybridization. JoVE (Journal of Visualized Experiments). (153), e60283 (2019).
  63. Johansson, M. E., Hansson, G. C. Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. Mucins. , 229-235 (2012).
  64. Lossinsky, A. S., et al. The histopathology of Candida albicans invasion in neonatal rat tissues and in the human blood-brain barrier in culture revealed by light, scanning, transmission and immunoelectron microscopy scanning. Histology and histopathology. , (2006).
  65. Rosenbach, A., Dignard, D., Pierce, J. V., Whiteway, M., Kumamoto, C. A. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryotic Cell. 9, 1075-1086 (2010).
  66. Vautier, S., et al. C andida albicans colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and T h17 immunity. Cellular Microbiology. 17, 445-450 (2015).
  67. Lyman, C., Navarro, E., Garrett, K., Roberts, D., Pizzo, P., Walsh, T. Adherence of Candida albicans to bladder mucosa: development and application of a tissue explant assay. Mycoses. 42, 255-259 (1999).

Play Video

Cite This Article
Monasky, R., Villa, S., Thangamani, S. An Ex vivo Assay to Study Candida albicans Hyphal Morphogenesis in the Gastrointestinal Tract. J. Vis. Exp. (161), e61488, doi:10.3791/61488 (2020).

View Video