Summary

高通量化学化合物筛选,以阐明其对细菌持久性的影响

Published: February 23, 2021
doi:

Summary

在本方法论文中,我们提出了一种高通量筛选策略,以识别对细菌持久性有重大影响的化合物,如渗透物。

Abstract

细菌持久性被定义为具有耐受高浓度抗生素能力的表型变种的一小部分。它们是一个重要的健康问题,因为它们与复发性慢性感染有关。虽然已知压力相关机制的随机和决定性动力学在持久性中起着重要作用,但表型转换到/从持久状态切换到/从持久状态背后的机制并不完全了解。虽然广泛研究了由环境信号(例如碳、氮和氧源耗尽)引发的持久性因素,但渗透物对持久性的影响尚未确定。我们使用微阵骨(即含有各种化学物质的96个井板),设计了一种方法,以高吞吐量的方式阐明各种渗透物对 大肠杆菌 持久性的影响。这种方法具有变革性,因为它可以很容易地适应其他筛选阵列,如药物面板和基因淘汰库。

Introduction

细菌培养物中含有少量的持久细胞,它们暂时对异常高浓度的抗生素产生耐受性。持久细胞在基因上与抗生素敏感的基因相同,其存活率归因于瞬时生长抑制1。坚持细胞最初是由格拉迪斯爱好2发现,但这个词是第一次由约瑟夫·比格使用时,他发现他们在青霉素处理葡萄球菌培养物3。Balaban等人发表的一项开创性研究发现了两种持久性类型:主要通过静止阶段形成的I型变种,以及在指数增长过程中连续产生的II型变种。坚持者通过致克隆生存检测检测,在抗生素治疗期间,每隔一段时间采集培养样本,清洗并镀在典型的生长介质上,以计算在没有抗生素的情况下可以殖民的存活细胞。细胞培养中持久性者的存在由双相杀灭曲线4,5来评估其中最初的指数衰变表示抗生素敏感细胞的死亡。然而,随着时间的流长,杀伤趋势会减少,最终导致一个高原区域,代表幸存的持久细胞。

坚持细胞已与各种疾病,如结核病6,囊性纤维化7,念珠菌病8和尿路感染9。迄今测试的几乎所有微生物都被发现产生持久性表型,包括高致病性结核分枝杆菌6、金黄色葡萄球菌10、伪多莫纳斯阿鲁吉诺萨7坎迪达白化病8。最近的研究也提供了证据,证明耐多药突变体从持久性亚人口11,12上升。这一领域的大量努力表明,持久机制非常复杂和多样化:与SOS反应13、14、活性氧(ROS)15、毒素/抗毒素(TA)系统16、自噬或自我消化17和ppGpp相关的严格反应18的随机和决定性因素均已知有助于持久性形成。

尽管在理解持久性表型方面取得了重大进展,但骨质素对细菌持久性的影响尚未得到充分理解。由于维持最佳渗透压力是细胞生长、正常功能和生存的必要条件,深入研究渗透物可导致抗持久策略的潜在目标。虽然费力,高通量筛选是一个非常有效的方法,以确定代谢物和其他化学物质,在持久表型19,20起关键作用。在这项研究中,我们将讨论我们已发表的方法19,其中我们使用了微阵列,即含有各种硅酸盐的96个井板(如氯化钠、尿素、亚硝酸钠、硝酸钠、氯化钾),以识别对大肠杆菌持久性有重大影响的渗透物。

Protocol

1. 准备生长介质、氯辛溶液和 大肠杆菌 细胞库存 常规 Luria-Bertani (LB) 介质:在除离子 (DI) 水中加入 10 克/升的三氯酮、10 克/升氯化钠 (NaCl) 和 5 克/升酵母提取物。通过自动切割对介质进行消毒。 LB agar 板:在 DI 水中加入 10 克/升的 tryptone、10 克/升的 NaCl、5 克/升的酵母提取物和 15 克/升的 agar,并通过自动杀菌对介质进行消毒。在所需的温度(+55°C)下…

Representative Results

图1 描述了我们的实验协议。稀释/生长周期实验(见第2号议定书)是根据Keren等人5 号进行的一项研究改编的,旨在消除源自隔夜文化的坚持者。 图2A 是用于确定OX治疗前后细胞培养CFU水平的阿加板块的代表性图像。在这些实验中,细胞在修改后的LB介质中培养,在半区域96井板中含有渗透物,如第4.2步所述。在轨道摇床中孵化板 24 小…

Discussion

此处描述的高吞吐量持久性检测是为了阐明各种化学物质对 大肠杆菌 持久性的影响而开发的。除了商用 PM 板外,还可以按照步骤 4.2 中描述的手动构建微型阵拉。此外,此处提出的协议是灵活的,可用于筛选其他微阵拉,如药物面板和细胞库,这些微阵都是 96 个井板格式。可以调整实验条件,包括生长阶段、接种率和中等,以测试这些库。例如,如果想要筛选细胞库,如 Keio E. 大肠杆…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢奥曼实验室的成员在这项研究中所做的宝贵意见。这项研究由NIH/NIAID K22AI125468职业转型奖和休斯顿大学创业基金资助。

Materials

14-ml test tube Fisher Scientific 14-959-1B
E. coli strain MG1655 Princeton University Obtained from Brynildsen lab
Flat-bottom 96-well plate USA Scientific 5665-5161
Gas permeable sealing membrane VWR 102097-058 Sterilized by gamma irradiation and free of cytotoxins
Half-area flat-bottom 96-well plate VWR 82050-062
LB agar Fisher Scientific BP1425-2 Molecular genetics grade
Ofloxacin salt VWR 103466-232 HPLC ≥97.5
Phenotype microarray (PM-9 and PM-10) Biolog N/A PM-9 and PM-10 plates contained various osmolytes and buffers respectively
Round-bottom 96-well plate USA Scientific 5665-0161
Sodium chloride Fisher Scientific S271-500 Certified ACS grade
Sodium nitrate Fisher Scientific AC424345000 ACS reagent grade
Sodium nitrite Fisher Scientific AAA186680B 98% purity
Square petri dish Fisher Scientific FB0875711A
Tryptone Fisher Scientific BP1421-500 Molecular genetics grade
Varioskan lux multi mode microplate reader Thermo Fisher Scientific VLBL00D0 Used for optical density measurement at 600 nm
Yeast extract Fisher Scientific BP1422-100 Molecular genetics grade

References

  1. Lewis, K. Persister cells, dormancy and infectious disease. Nature Reviews Microbiology. 5 (1), 48-56 (2007).
  2. Hobby, G. L., Meyer, K., Chaffee, E. Observations on the Mechanism of Action of Penicillin. Experimental Biology and Medicine. 50 (2), 281-285 (1942).
  3. Bigger, J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet. 244 (6320), 497-500 (1944).
  4. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., Leibler, S. Bacterial persistence as a phenotypic switch. Science. 305 (5690), 1622-1625 (2004).
  5. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters. 230 (1), 13-18 (2004).
  6. Keren, I., Minami, S., Rubin, E., Lewis, K. Characterization and transcriptome analysis of mycobacterium tuberculosis persisters. mBio. 2 (3), (2011).
  7. Mulcahy, L. R., Burns, J. L., Lory, S., Lewis, K. Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis. Journal of Bacteriology. 192 (23), 6191-6199 (2010).
  8. LaFleur, M. D., Kumamoto, C. A., Lewis, K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrobial Agents and Chemotherapy. 50 (11), 3839-3846 (2006).
  9. Allison, K. R., Brynildsen, M. P., Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 473 (7346), 216-220 (2011).
  10. Lechner, S., Lewis, K., Bertram, R. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. Journal of Molecular Microbiology and Biotechnology. 22 (4), 235-244 (2012).
  11. Barrett, T. C., Mok, W. W. K., Murawski, A. M., Brynildsen, M. P. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nature Communications. 10 (1), 1177 (2019).
  12. Windels, E. M., et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME Journal. 13 (5), 1239-1251 (2019).
  13. Dörr, T., Lewis, K., Vulić, M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics. 5 (12), 1000760 (2009).
  14. Völzing, K. G., Brynildsen, M. P. Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery. mBio. 6 (5), (2015).
  15. Grant, S. S., Kaufmann, B. B., Chand, N. S., Haseley, N., Hung, D. T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences. 109 (30), 12147-12152 (2012).
  16. Gerdes, K., Maisonneuve, E. Bacterial Persistence and Toxin-Antitoxin Loci. Annual Review of Microbiology. 66 (1), 103-123 (2012).
  17. Orman, M. A., Brynildsen, M. P. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nature Communications. 6 (1), 7983 (2015).
  18. Korch, S. B., Henderson, T. A., Hill, T. M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Molecular Microbiology. 50 (4), 1199-1213 (2003).
  19. Karki, P., Mohiuddin, S. G., Kavousi, P., Orman, M. A. Investigating the effects of osmolytes and environmental ph on bacterial persisters. Antimicrobial Agents and Chemotherapy. 64 (5), 02393 (2020).
  20. Mohiuddin, S. G., Hoang, T., Saba, A., Karki, P., Orman, M. A. Identifying Metabolic Inhibitors to Reduce Bacterial Persistence. Frontiers in Microbiology. 11, 472 (2020).
  21. Brooun, A., Liu, S., Lewis, K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy. 44 (3), 640-646 (2000).
  22. Luidalepp, H., Jõers, A., Kaldalu, N., Tenson, T. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology. 193 (14), 3598-3605 (2011).
  23. Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Molecular Systems Biology. 2, 0008 (2006).
  24. Zaslaver, A., et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods. 3 (8), 623-628 (2006).
  25. Hajmeer, M., Ceylan, E., Marsden, J. L., Fung, D. Y. C. Impact of sodium chloride on Escherichia coli O157:H7 and Staphylococcus aureus analysed using transmission electron microscopy. Food Microbiology. 23 (5), 446-452 (2006).
check_url/kr/61597?article_type=t

Play Video

Cite This Article
Karki, P., Orman, M. A. High-throughput Screening of Chemical Compounds to Elucidate Their Effects on Bacterial Persistence. J. Vis. Exp. (168), e61597, doi:10.3791/61597 (2021).

View Video