Summary

通过在小鼠心脏中应用光遗传学多位点光刺激进行高级心律管理

Published: August 26, 2021
doi:

Summary

这项工作报告了一种使用micro-LED阵列的局部光刺激和同时光学映射心外膜电位来控制转基因通道视紫红质-2(ChR2)小鼠完整鼠心脏心律的方法。

Abstract

室性快速性心律失常是全世界死亡和发病的主要原因。使用高能电击的电除颤是目前危及生命的心室颤动的唯一治疗方法。然而,除颤可能有副作用,包括无法忍受的疼痛、组织损伤和预后恶化,这表明开发更温和的心律管理策略的医学需求很大。除了降低能量的电方法外,心脏光遗传学还被引入,作为使用光敏膜离子通道和光脉冲影响心脏活动的有力工具。在本研究中,将描述一种基于应用3 x 3微发光二极管(micro-LED)阵列的多位点起搏成功光刺激Langendorff灌注的完整鼠心脏的稳健有效的方法。心外膜电压波的同时光学映射允许研究区域特异性刺激的影响,并直接在现场评估新诱导的心脏活动。获得的结果表明,除颤的功效在很大程度上取决于心律失常期间为光刺激选择的参数。将证明心脏的照明区域对于终止成功以及如何在照明期间实现心脏活动的靶向控制以改变心律失常模式起着至关重要的作用。总之,该技术提供了一种优化现场机制操作的可能性,以实现心律的实时反馈控制,并且与使用非特异性电击应用相比,在区域特异性方面,减少了对心脏系统的潜在危害的新方法。

Introduction

对心律失常期间时空动力学的早期研究表明,心脏颤动期间的复杂电模式是由涡状旋转激励波驱动的1。这一发现为心律失常的潜在机制提供了新的见解,从而开发了基于心肌位点激发的新型电终止疗法2,34然而,使用电场刺激的治疗是非局部的,可能会支配周围所有可兴奋的细胞,包括肌肉组织,导致细胞和组织损伤,以及无法忍受的疼痛。与电疗法相比,光遗传学方法提供了一种特异性和组织保护技术,以高空间和时间精度唤起心肌细胞动作电位。因此,光遗传学刺激具有对心脏颤动期间混沌激活模式进行微创控制的潜力。

通过遗传操作将光敏离子通道通道视紫红质-2(ChR2)引入可兴奋细胞5,6,7使得使用光刺激可兴奋细胞的膜电位去极化成为可能。已经开发了几种医学应用,包括激活神经元网络,控制心脏活动,恢复视力和听力,治疗脊髓损伤等8,9,101112,1314由于其毫秒响应时间15,ChR2在心脏病学中的应用具有巨大的潜力,使其非常适合心律失常的心脏动力学的靶向控制。

在这项研究中,显示了转基因小鼠模型完整心脏的多位点光刺激。总之,在欧洲共同体第七框架计划FP7/2007-2013(HEALTH-F2-2009-241526)的范围内建立了转基因α-MHC-ChR2小鼠系,并由S. E. Lehnart教授慷慨提供。一般情况下,在α-MHC控制下表达Cre-重组酶的转基因成年雄性C57/B6/J与雌性 B6.Cg-Gt(ROSA)26Sortm27.1(CAG-COP4*H134R/tdTomato)Hye/J配对交配。由于心脏STOP盒在第二代中被删除,后代表现出稳定的MHC-ChR2表达,并用于维持心脏光敏集落。所有实验均在36-48周龄的两性成年小鼠中进行。照明是使用3 x 3微型LED阵列实现的,该阵列如1617 中所述制造,只是未实现硅基外壳和短光学玻璃光纤。它在心脏应用中的首次使用是在18年。基于类似制造技术的线性微型LED阵列已被用作心脏起搏的穿透探针19。微型 LED 排列在 3 x 3 阵列中,间距为 550 μm,可在非常小的区域内提供高空间分辨率和高辐射功率。作者在这项工作中展示了一种多功能的局部多位点光刺激,这可能为开发新的抗心律失常治疗方法开辟道路。

以下实验方案涉及离体逆行朗根道夫灌注,其空心主动脉用作灌注入口。由于施加的灌注压和心脏收缩,灌注液流经冠状动脉,冠状动脉从主动脉分支出来。在所展示的工作中,使用恒压设置灌注心脏,通过将灌注储液罐提升到 1 m 高度(相当于 73.2 mmHg)来实现,从而产生 2.633 ± 0.583 mL/min 的流速。在实验过程中使用两种Tyrode溶液作为灌注剂。常规Tyrode溶液支持稳定的窦性心律,而Low-K + Tyrode溶液与Pinacidil混合,以诱导小鼠心脏的心律失常。使用六角形水浴允许通过六个不同的平面窗口观察心脏,允许耦合多个光学元件,通过折射引起的失真较小。

Protocol

所有实验都严格遵守动物福利法规,符合德国立法、当地规定,并符合欧洲实验动物科学协会联合会 (FELASA) 的建议。动物实验的批准申请已获得负责动物福利当局的批准,所有实验均已报告给我们的动物福利代表。 1. 实验准备和材料 光学映射设置注:光学设置以及电气设置如图 1所示。材料表中详细列出了光学和电气设置中使用的所有组?…

Representative Results

该协议允许使用LED 1和LED 2(图1)产生的光刺激脉冲诱导完整鼠心脏中的室性心律失常,频率f ind在25 Hz和35 Hz之间,脉冲持续时间Wind在2 ms和10 ms之间。请注意,这种快速光脉冲的目的不是捕捉心律,而是使心脏活动不平衡,从而产生不稳定的电波,从而促进心律失常。用光诱导心律失常比用电刺激诱导的优点是心电图中不会引起伪影,从而可以不受限制地对…

Discussion

成功治疗快速性心律失常是心脏治疗的关键。然而,心律失常发生、延续和终止的生物物理机制尚不完全清楚。因此,心脏研究旨在优化电击疗法,以更温和地终止心律失常,从而提高患者的生活质量28293031低能量电方法有望显着减少严重的副作用,但仍可能诱发不必要的肌肉兴奋。心脏光?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢Marion Kunze和Tina Althaus在实验过程中的出色技术支持。导致结果的研究已获得欧洲共同体第七框架方案FP7/2007-2013的资助,资助协议号为HEALTH-F2-2009-241526。德国心血管研究中心、DZHK e.V.(MD28项目)、合作伙伴网站哥廷根、德国研究基金会CRC 1002(项目C03)和马克斯·普朗克学会也提供了支持。这项工作得到了德国研究基金会(DFG,批准号EXC 1086)资助的卓越集群BrainLinks-BrainTools的部分支持。

Materials

Chemical Components
Blebbistatin TargetMol T6038 10 mM stock solution
BSA/Albumin Sigma-Aldrich A4919
Calcium Chloride Sigma-Aldrich C1016 CaCl2
Carbogen Westfalen 50 l bottle
DI-4-ANBDQPQ AAT Bioquest 21499 Dye for Optical Mapping
Glucose Sigma-Aldrich D9434 C6H12O6
Heparin LEO Pharma Heparin-Natrium Leo 25.000 I.E./5 ml, available only on prescription
Hydrochlorid Acid Merck 1.09057.1000 HCl, 1 M stock solution
Isoflurane CP Pharma 1 ml/ml, available only on prescription
Magnesium Chloride Merck 8.14733.0500 MgCl2
Monopotassium Phosphate Sigma-Aldrich 30407 KH2PO4
Pinacidil monohydrate Sigma-Aldrich P154-500mg 10 mM stock solution
Potassium Chloride Sigma-Aldrich P5405 KCl
Sodium Bicarbonate Sigma-Aldrich S5761 NaHCO3
Sodium Chloride Sigma-Aldrich S5886 NaCl
Sodium Hydroxide Merck 1.09137.1000 NaOH, 1 M stock solution
Electrical Setup
Biopac MP150 Biopac Systems MP150WSW data acquisition and analysis system
Custom-built ECG, alternative ECG100C Biopac Systems ECG100C Electrocardiogram Amplifier
Custom-built water bath heater using heating cable RMS Heating System HK-5,0-12 Heating cable 120W
Hexagonal water bath
LED Driver Power supply Thorlabs KPS101 15 V, 2.4 A Power Supply Unit with 3.5 mm Jack Connector for One K- or T-Cube.
LEDD1B LED Driver Thorlabs LEDD1B T-Cube LED Driver, 1200 mA Max Drive Current
MAP, ECG Electrode Hugo Sachs Elektronik BS4 73-0200 Mini-ECG Electrode for isoalted hearts
micro-LED Driver e.g. AFG Agilent Instruments A-2230 Arbitrary function generator (AFG)
Signal Generator Agilent Instruments A-2230 AFG
micro-LED Array Components
Epoxid glue Epoxy Technology EPO-TEK 353ND Two component epoxy
Fluoropolymer  Asahi Glass Co. Ltd. Cytop 809M Fluoropolymer with high transparency
Image reversal photoresist Merck KGaA AZ 5214E Image Reversal Resist for High Resolution
LED chip  Cree Inc. C460TR2227-S2100 Blue micro-LED
Photoresist Merck KGaA AZ 9260 Thick Positive Photoresists
Polyimide UBE Industries Ltd. U-Varnish S Polyimide Solution
Silicone NuSil Technology LLC MED-6215 Low viscosity silicone elastomer
Solvent free adhesive John P. Kummer GmbH Epo-Tek 301-2 Epoxy resin with low viscosity
Optical Mapping
Blue Filter Chroma Technology Corporation ET470/40x Blue excitation filter
Camera Photometrics Cascade 128+ High performance EMCCD Camera
Camera Objective Navitar DO-5095 Navitar high speed fixed focal length lenses work with CCD and CMOS cameras
Dichroic Mirror Semrock FF685-Di02-25×36 685 nm edge BrightLine® single-edge standard epi-fluorescence dichroic beamsplitter
Emmision Filter Semrock FF01-775/140-25 775/140 nm BrightLine® single-band bandpass filter
Heatsink Advanced Thermal Solutions ATSEU-077A-C3-R0 Heat Sinks – LED STAR LED Heatsink, 45mm dia., 68mm, Black/Silver, Unthreaded Baseplate Hardware
LED 1 and LED 2 LED Engin Osram LZ4-00B208 High Power LEDs – Single Colour Blue, 460 nm 130 lm, 700mA
LED 3 Thorlabs M625L3 625 nm, 700 mW (Min) Mounted LED, 1000 mA
Lenses LED Engin Osram LLNF-2T06-H LED Lighting Lenses Assemblies LZ4 LENS NARROW FLOOD BEAM
Photodiode for power meter Thorlabs S120VC Standard Photodiode Power Sensor
Power Meter Thorlabs PM100D Compact Power and Energy Meter
Red Filter Semrock FF02-628/40-25 BrightLine® single-band bandpass filter

References

  1. Davidenko, J. M., Pertsov, A. V., Salamonsz, R. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 355, 349-351 (1992).
  2. Fenton, F. H., et al. Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation. 120 (6), 467-476 (2009).
  3. Luther, S., et al. Low-energy control of electrical turbulence in the heart. Nature. 475, 235-239 (2011).
  4. Pumir, A., et al. Wave emission from heterogeneities opens a way to controlling chaos in the heart. Physical Review Letters. 99, 208101 (2007).
  5. Deisseroth, K. Optogenetics. Nature Methods. 8, 26-29 (2011).
  6. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 8, 1263-1268 (2005).
  7. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences. 100 (24), 13940-13945 (2003).
  8. Bruegmann, T., et al. Optogenetic control of heart muscle in vitro and in vivo. Nature Methods. 7, 897-900 (2010).
  9. Natasha, G., et al. et al.Channelrhodopsins: visual regeneration and neural activation by a light switch. New Biotechnology. 30 (5), 461-474 (2013).
  10. Zhang, F., et al. Multimodal fast optical interrogation of neural circuitry. Nature. 446, 633-639 (2007).
  11. Alilain, W. J., et al. Light-induced rescue of breathing after spinal cord injury. Journal of Neuroscience. 28 (46), 11862-11870 (2008).
  12. Ahmad, A., Ashraf, S., Komai, S. Optogenetics applications for treating spinal cord injury. Asian Spine Journal. 9 (2), 299-305 (2015).
  13. Dieter, A., Keppeler, D., Moser, T. Towards the optical cochlear implant: Optogenetic approaches for hearing restoration. EMBO Molecular Medicine. 12 (4), e11618 (2020).
  14. Keppeler, D., et al. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Science Translational Medicine. 12 (553), eabb8086 (2020).
  15. Verhoefen, M. K., Bamann, C., Blöcher, R., Förster, U., Bamberg, E. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. ChemPhysChem. 11 (14), 3113-3122 (2010).
  16. Schwaerzle, M., Elmlinger, P., Paul, O., Ruther, P. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. , 5252-5255 (2014).
  17. Schwaerzle, M., Elmlinger, P., Paul, O., Ruther, P. Miniaturized 3 x 3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection. , 162-165 (2015).
  18. Diaz-Maue, L., Schwaerzle, M., Ruther, P., Luther, S., Richter, C. Follow the light – From low-energy defibrillation to multi-site photostimulation. , 4832-4835 (2018).
  19. Zgierski-Johnston, C., et al. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. Progress in Biophysics and Molecular Biology. , 51-61 (2020).
  20. . mouser.de, LED Engin, [Online] Available from: https://www.mouser.de/datasheet/2/228/5412893-LED_2520Engin_Datasheet_LuxiGen_LZ4-00B208 (2020)
  21. . thorlabs.com, thorlabs, [Online] Available from: https://www.thorlabs.com/_sd.cfm?fileName=25135-S01.pdf&partNumber=M625L3 (2020)
  22. Bruegmann, T., et al. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. Journal of Clinical Investigation. 126 (10), 3894-3904 (2016).
  23. Richter, C., Christoph, J., Lehnart, S. E., Luther, S. Optogenetic light crafting tools for the control of cardiac arrhythmias. Methods in Molecular Biology. 1408, 293-302 (2016).
  24. Quiñonez Uribe, R. A., Luther, S., Diaz-Maue, L., Richter, C. Energy-reduced arrhythmia termination using global photostimulation in optogenetic murine hearts. Frontiers in Physiology. 9 (1651), (2018).
  25. Moreno, I. LED irradiance pattern at short distances. Applied Optics. 59 (1), 190-195 (2020).
  26. Behrend, A., Bittihn, P., Luther, S. Predicting unpinning success rates for a pinned spiral in an excitable medium. , 345-348 (2010).
  27. Kappadan, V., et al. High-resolution optical measurement of cardiac restitution, contraction, and fibrillation dynamics in beating vs. blebbistatin-uncoupled isolated rabbit hearts. Frontiers in Physiology. 11 (464), (2020).
  28. Christoph, J., et al. Electromechanical vortex filaments during cardiac fibrillation. Nature. 555, 667-672 (2018).
  29. O’Shea, C. Cardiac optogenetics and optical mapping – Overcoming spectral congestion in all-optical cardiac electrophysiology. Frontiers in Physiology. 10 (182), (2019).
  30. Aras, K. K., Faye, N. R., Cathey, B., Efimov, I. R. Critical volume of human myocardium necessary to maintain ventricular fibrillation. Circulation: Arrhythmia and Electrophysiology. 11 (11), e006692 (2018).
  31. Trayanova, N., Doshi, A. N., Prakosa, A. How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. Wiley Interdisciplinary Reviews in System Biology and Medicine. 12 (3), 1477 (2020).
  32. Bingen, B., et al. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovascular Research. 104 (1), 194-205 (2014).
  33. Burton, R. A. B., et al. Optical control of excitation waves in cardiac tissue. Nature Photonics. 9 (12), 813-816 (2015).
  34. Dura, M., Schröder-Schetelig, J., Luther, S., Lehnart, S. E. Toward panoramic in situ mapping of action potential propagation in transgenic hearts to investigate initiation and therapeutic control of arrhythmias. Frontiers in Physiology. 5, 337 (2014).
  35. Crocini, C., et al. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Science Reports. 6 (35628), (2016).
  36. Nyns, E. C. A., et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. European Heart Journal. 38 (27), 2132-2136 (2017).
  37. Wilde, A. A. K+atp channel opening and arrhythmogenesis. Journal of Cardiovascular Pharmacology. 24 (4), 35-40 (1994).
  38. Christoph, J., Luther, S. Marker-free tracking for motion artifact compensation and deformation measurements in optical mapping videos of contracting hearts. Frontiers in Physiology. 9 (1483), (2018).
  39. Christoph, J., Schröder-Schetelig, J., Luther, S. Electromechanical optical mapping. Progress in Biophysics and Molecular Biology. 130(B), 150-169 (2017).
check_url/kr/62335?article_type=t

Play Video

Cite This Article
Diaz-Maue, L., Steinebach, J., Schwaerzle, M., Luther, S., Ruther, P., Richter, C. Advanced Cardiac Rhythm Management by Applying Optogenetic Multi-Site Photostimulation in Murine Hearts. J. Vis. Exp. (174), e62335, doi:10.3791/62335 (2021).

View Video