Summary

使用活性氧敏感荧光探针分析小鼠肠道类器官中的氧化应激

Published: September 17, 2021
doi:

Summary

本方案描述了一种使用定性成像和定量细胞术测定法检测肠道小鼠类器官中活性氧(ROS)的方法。这项工作可以潜在地扩展到其他荧光探针,以测试所选化合物对ROS的影响。

Abstract

活性氧(ROS)在肠道稳态中起着至关重要的作用。ROS是细胞代谢的天然副产品。它们是在粘膜水平上对感染或损伤作出反应而产生的,因为它们参与抗菌反应和伤口愈合。它们也是关键的次级信使,调节多种途径,包括细胞生长和分化。另一方面,过量的ROS水平会导致氧化应激,这对细胞有害,有利于肠道疾病,如慢性炎症或癌症。这项工作提供了一种直接的方法,通过使用市售的荧光探针,通过活体成像和流式细胞术检测肠道小鼠类器官中的ROS。在这里,该协议描述了测定调节肠道类器官氧化还原平衡并检测特定肠道细胞类型中的ROS水平的化合物的作用,此处通过分析用GFP遗传标记的肠干细胞来举例说明。该协议可与其他荧光探针一起使用。

Introduction

活性氧(ROS)是细胞代谢的天然副产物。它们也可以由专门的酶复合物主动产生,例如膜结合的NADPH-氧化酶(NOX)和双氧化酶(DUOX),它们产生超氧阴离子和过氧化氢1。通过表达抗氧化酶和ROS清除剂,细胞可以微调其氧化还原平衡,从而保护组织稳态2。虽然ROS可能对细胞具有剧毒并破坏DNA,蛋白质和脂质,但它们是至关重要的信号分子2。在肠上皮中,茎和祖细胞增殖需要适度的ROS水平3;高ROS水平导致其凋亡4。慢性氧化应激与许多胃肠道疾病有关,例如炎症性肠病或癌症。例如,在Wnt驱动的肠癌小鼠模型中,发现癌细胞增殖需要通过激活NADPH-氧化酶来提高ROS的产生56。定义肠道细胞,特别是干细胞,干细胞如何管理氧化应激以及细胞环境如何影响这种能力对于更好地了解这种疾病的病因至关重要7

在组织中,不同的细胞类型呈现基底氧化状态,该状态可能根据其功能和代谢以及不同水平的氧化剂和抗氧化剂分子的表达而变化47在体内 监测ROS是非常具有挑战性的。已经开发出根据其氧化还原状态发射荧光的细胞渗透染料,以可视化和测量活细胞和动物中的细胞ROS。然而,它们的功效取决于它们在活组织内的扩散和快速读数,使它们难以在动物模型中使用8

过去,化合物对ROS产生的影响的研究是使用细胞系完成的,但这可能无法反映体内情况。由Clevers9小组开发的肠道类器官模型使肠道原代细胞的离体生长成为可能。在存在确定的生长因子的情况下,在基质中培养肠隐窝,导致称为类器官(迷你肠道)的三维结构,其复制隐窝组织,来自不同上皮谱系的细胞排列在内腔内,肠干细胞驻留在小隐窝样突起中。

在这里,利用该模型,描述了一种简单的方法,通过将市售的ROS敏感染料添加到类器官培养基中,以单细胞分辨率研究原代肠细胞中的氧化应激。

读板器通常用于检测总种群中的ROS产量。该协议使用流式细胞术或成像测定来检测具有转基因细胞或特异性抗体染色的特定细胞类型中的ROS。这项工作涉及小鼠肠道类器官培养和通过共聚焦成像和流式细胞术定量的ROS可视化。使用Lgr5-GFP小鼠衍生的小肠类器官,可以特异性分析不同处理后肠干细胞中的氧化应激水平。该协议可用于测试外源分子(例如微生物群衍生的穆拉米基二肽(MDP)10)在用所选化合物刺激类器官后对ROS平衡的影响。

Protocol

所有动物实验均在巴斯德使用委员会研究所和法国农业部批准后进行,编号为2016-0022。所有步骤都在组织培养罩内进行。 1. 肠道类器官培养试剂和材料的制备 为了制备生长培养基,混合先进的DMEM / F-12补充1x谷氨酰胺,1x青霉素/链霉素(P / S)溶液,10mM的HEPES,50ng / mL的小鼠EGF,20μg/ mL小鼠Noggin 500ng / mL小鼠R-Spondin1( 见材料表)。在隐窝提取期间将培养基…

Representative Results

作为所述方案的概念证明,从Lgr5-eGFP-IRES-CreERT2小鼠系获得的隐窝被用于其中肠干细胞显示由Barker等人建立的镶嵌GFP表达,以最初表征肠干细胞10 并允许基于其GFP表达绘制这些细胞。因此,提供了一个模型来比较不同处理下特定细胞类型群体中的ROS水平。使用ROS抑制剂(NAC)和诱导剂(tBHP),已知其作用于细胞ROS以可视化其水平的变化。 图1A<…

Discussion

这项工作提供了一个循序渐进的方案,以分离小鼠空肠隐窝,将其培养成3D类器官,并通过将ROS敏感的荧光探针与整个类器官的定性显微镜成像相结合,并在类器官解离后使用流式细胞术对单个细胞进行定量ROS测量来分析类器官中的ROS。

此方法中的第一个关键步骤是加密提取过程。事实上,隐窝制剂的质量是成功形成类器官的关键。因此,获得具有富集隐窝和少量细胞碎片或…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了法国国家研究机构(ANR)拨款17-CE14-0022(i-Stress)的支持。

Materials

Mice
Lgr5-EGFP-IRES-creERT2 (Lgr5-GFP) The Jackson Laboratory
Growth culture medium
Advanced DMEM F12 (DMEM/F12) ThermoFisher 12634010
B-27 Supplement, minus vitamin A ThermoFisher 12587010 Stock Concentration: 50x
GlutaMAX (glutamine) ThermoFisher 35050038 Stock Concentration: 100x
Hepes ThermoFisher 15630056 Stock Concentration: 1 M
Murine EGF R&D 2028-EG-200 Stock Concentration: 500 µg/mL in PBS
murine Noggin R&D 1967-NG/CF Stock Concentration: 100 µg/mL in PBS
Murine R-spondin1 R&D 3474-RS-050 Stock Concentration: 50 µg/mL in PBS
N-2 Supplement ThermoFisher 17502048 Stock Concentration: 100x
Penicillin-Streptomycin (P/S) ThermoFisher 15140122 Stock Concentration: 100x (10,000 units/mL of penicillin and 10,000 µg/mL of streptomycin)
Material
70 µm cell strainer Corning 352350
96-well round bottom Corning 3799
ball tip scissor Fine Science Tools GMBH 14086-09
CellROX® Deep Red Reagent ThermoFisher C10422
DAPI (4’,6-diamidino-2-phénylindole, dichlorhydrate) (fluorgenic probe) ThermoFisher D1306 stock at 10 mg/mL
DPBS 1x no calcium no magnesium (DPBS) ThermoFisher 14190144
FLuoroBrite DMEM (DMEM no phenol red) ThermoFisher A1896701
Hoechst 33342 ThermoFisher H3570 stock at 10 mg/mL
Matrigel Growth Factor Reduced, Phenol Red Free (Basement Membrane Matrix) Corning 356231 once received thaw o/n in the fridge, keep for 1h on ice and, make 500 mL aliquots and store at -20 °C
µ-Slide 8 Well chambers Ibidi 80826
N-acetylcysteine (NAC) Sigma A9165
tert-Butyl hydroperoxide (tBCHP)solution (70%wt. In H2O2) Sigma 458139
TrypLE Express Enzyme (1X), no phenol red (trypsin) ThermoFisher 12604013
UltraPure 0.5 M EDTA, pH8.0 ThermoFisher 15575020
Y-27632 Sigma Y0503 Rock-inhibitor to be used to minimize cell death upon tissue dissociation
Programs and Equipment
Attune NxT (Flow Cytometer) ThermoFischer Flow cytometer analyzer
Fiji/ImageJ https://imagej.net/software/fiji/downloads images generation
FlowJo BD Bioscience FACS analysis
Observer.Z1 Zeiss confocal system
Opterra (swept-field confocal) Bruker confocal system
high speed EMCCD Camera Evolve Delta 512 Photometrics confocal system
Prism GraphPad Software statistical analysis

References

  1. Aviello, G., Knaus, U. G. NADPH oxidases and ROS signaling in the gastrointestinal tract review-article. Mucosal Immunology. 11 (4), 1011-1023 (2018).
  2. Holmström, K. M., Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology. 15 (6), 411-421 (2014).
  3. vander Post, S., Birchenough, G. M. H., Held, J. M. NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation. Cell Reports. 35 (1), 108949 (2021).
  4. Schieber, M., Chandel, N. S. ROS function in redox signaling and oxidative stress. Current Biology. 24 (10), 453-462 (2014).
  5. Myant, K. B., et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell. 12 (6), 761-773 (2013).
  6. Juhasz, A., et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. Journal of Biological Chemistry. 292 (19), 7866-7887 (2017).
  7. Aviello, G., Knaus, U. G. ROS in gastrointestinal inflammation: Rescue Or Sabotage. British Journal of Pharmacology. 174 (12), 1704-1718 (2017).
  8. Gomes, A., Fernandes, E., Lima, J. L. F. C. Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods. 65 (2-3), 45-80 (2005).
  9. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  10. Levy, A., et al. Innate immune receptor NOD2 mediates LGR5+ intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation. Proceedings of the National Academy of Sciences. 117 (4), 1994-2003 (2020).
  11. Choi, H., Yang, Z., Weisshaar, J. C. Single-cell, real-time detection of oxidative stress induced in escherichia coli by the antimicrobial peptide CM15. Proceedings of the National Academy of Sciences of the United States of America. 112 (3), 303-310 (2015).
  12. Amri, F., Ghouili, I., Amri, M., Carrier, A., Masmoudi-Kouki, O. Neuroglobin protects astroglial cells from hydrogen peroxide-induced oxidative stress and apoptotic cell death. Journal of Neurochemistry. 140 (1), 151-169 (2017).
  13. Ahn, H. Y., et al. Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress Using Profluorescent Nitroxides. Journal of the American Chemical Society. 134 (10), 4721-4730 (2012).
  14. Bidaux, G., et al. Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proceedings of the National Academy of Sciences. 112 (26), 3345-3354 (2015).
  15. Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R., Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proceedings of the National Academy of Sciences. 107 (50), 21316 (2010).
  16. Rabbani, P. S., Abdou, S. A., Sultan, D. L., Kwong, J., Duckworth, A., Ceradini, D. J. In vivo imaging of reactive oxygen species in a murine wound model. Journal of Visualized Experiments. (141), e58450 (2018).
  17. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
check_url/kr/62880?article_type=t

Play Video

Cite This Article
Stedman, A., Levy, A., Sansonetti, P. J., Nigro, G. Analyzing Oxidative Stress in Murine Intestinal Organoids using Reactive Oxygen Species-Sensitive Fluorogenic Probe. J. Vis. Exp. (175), e62880, doi:10.3791/62880 (2021).

View Video