Summary

微流体声导术,使用适配子亲和磁珠对革兰氏阴性菌进行流式分离

Published: October 17, 2022
doi:

Summary

本文介绍了使用微流体声传技术以及适配体修饰的微珠的微流控声传导芯片的制造和操作,这些微孔片可用于从培养基中快速,有效地分离革兰氏阴性菌。

Abstract

本文介绍了使用微流体声传技术以及适配体修饰的微珠的微流体声传芯片的制造和操作,这些微珠可用于从培养基中快速,有效地分离革兰氏阴性细菌。这种方法使用长方形微通道的混合物提高了分离效率。在该系统中,样品和缓冲液通过流量控制器注入入口端口。对于磁珠定心和样品分离,交流电源通过带有功率放大器的函数发生器施加到压电换能器上,以在微通道中产生声辐射力。入口和出口处都有一个分叉通道,可以同时进行分离、纯化和浓缩。该装置的回收率为>98%,纯度为97.8%,剂量浓度为10倍。这项研究表明,回收率和纯度高于现有的分离细菌方法,表明该装置可以有效地分离细菌。

Introduction

除了基于介电转移、磁电泳、磁透镜提取、过滤、离心微流体和惯性效应以及表面声波12的方法之外,正在开发微流体平台以从医疗和环境样品中分离细菌。使用聚合酶链反应(PCR)继续检测致病菌,但通常费力,复杂且耗时34。微流体声传导系统是通过合理的通量和非接触式细胞隔离来解决这个问题的替代方案567。声光照明是一种利用材料通过声波运动的现象来分离或浓缩磁珠的技术。当声波进入微通道时,根据磁珠的大小、密度等对它们进行分类,细胞可以根据悬浮介质78的生化和电学性质进行分离。因此,许多声传声学研究已被积极开展9,1011,最近,在驻场声波微流体中引入由边界驱动的声流引起的声传运动的3D数值模拟12

各个领域的研究正在研究如何替换抗体23。适配子是一种具有高选择性和特异性的目标材料,许多研究正在进行291013。与抗体相比,适配子具有体积小、生物稳定性好、成本低、重现性高等优点,正在诊断和治疗应用中进行研究2314.

在这里,本文描述了一种微流体声传电技术方案,可用于使用适配体修饰的微珠从培养基中快速,有效地分离革兰氏阴性(GN)细菌。该系统通过单压电致动产生二维(2D)声驻波,方法是同时刺激长矩形微通道内的两个正交共振,以将适配体连接的微珠对准并聚焦在节点和反节点点上,以实现分离效率2111516.入口和出口处都有一个分叉通道,可以同时进行分离、纯化和浓缩。

该方案有助于细菌性传染病的早期诊断,以及通过实时水监测对致病性细菌感染的快速,选择性和敏感反应。

Protocol

1. 微流控声电穿刺芯片设计 注意: 图1 显示了通过声传电从微通道中分离和收集目标微珠的示意图。微流体声传技术芯片采用CAD程序设计。 设计一种微流控声输电芯片,该芯片使用适配体修饰的磁珠和链霉亲和素包覆的聚苯乙烯(PS)磁珠的混合物,对应于细菌的大小,以研究设备的分离性能。 设计一种微流体声传导芯片,…

Representative Results

图5 显示了磁珠流与PZT电压(OFF、0.1 V、0.5 V、5 V)的函数关系。在本研究中引入的声传芯片的情况下,证实随着PZT电压的增加,10μm大小的磁珠的中心浓度增加。大多数10μm大小的磁珠集中在PZT电压的5 V的中心。通过这一结果,在单通道函数发生器中产生了3.66 MHz的谐振频率,并使用功率放大器将一般信号放大了16 dB(约9倍)。 表3 显示了将1…

Discussion

我们开发了一种声波悬浮微流体装置,用于根据其大小和类型以及适配体修饰的微珠,基于连续运行方法,从培养样品中高速捕获和转移GN细菌。与之前报道的 20、21、22、23、242526 相比,长方形微通道可实现更简单的 2D 声传导术设计和…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国政府(科学和ICT部)资助的韩国国家研究基金会(NRF)的资助。(否。NRF-2021R1A2C1011380)

Materials

1 µm polystyrene microbeads Bang Laboratories PS04001 Cell size beads
10 µm Streptavidin-coated microbeads Bang Laboratories CP01007 Aptamer affinity beads
4-inch Silicon Wafer/SU-8 mold 4science 29-03573-01 Components of chip
Aptamer Integrated DNA Technologies GN3-6' RNA for bacteria conjugation
Borosilicate glass Schott BOROFLOAT 33 Components of chip
Centrifuge Daihan CF-10 Wasing particles
Cyanoacrylate glue 3M AD100 Attach PZT to microchip
Escherichia coli DH5α KCTC KCTC2571 Target bacteria
Functional generator GW Instek AFG-2225 Generate frequency
High-speed camera Photron FASTCAM Mini Observation of separation
Hot plate As one HI-1000 Heating plate for curing of liquid PDMS
KOVAX-SYRINGE 10 mL Syringe Koreavaccine 22G-10ML Fill the microfluidic acoustophoresis channel with bubble-free demineralized water.
Liquid polydimethylsiloxane, PDMS Dow Corning Inc. Sylgard 184 Components of chip
LB Broth Miller BD Difco 244620 Cell culture (Luria-Bertani medium)
Microscope Olympus Corp. IX-81 Observation of separation
PBS buffer Capricorn scientific PBS-1A Wasing bacteria
PEEK Tubes Saint-Gobain Ppl Corp. AAD04103 Inject or collect particles
Piezoelectric transducer Fuji Ceramics C-213 Generate specific wave in channel
Power amplifier Amplifier Research 75A250A Amplify frequency
Pressure controller/μflucon AMED AMED-μflucon Control of air pressure/flow controller
Tris-HCl buffer invitrogen 15567027 Wasing particles
Tube rotator SeouLin Bioscience SLRM-3 Modifiying aptamer and bead

References

  1. Wu, M., et al. Acoustofluidic separation of cells and particles. Microsystem & Nanoengineering. 5 (1), 1-18 (2019).
  2. Lee, S. W., et al. Aptamer affinity-bead mediated capture and displacement of Gram-negative bacteria using acoustophoresis. Micromachines. 10 (11), 770 (2019).
  3. Hirvonen, J. J., et al. One-step sample preparation of positive blood cultures for the direct detection of methicillin-sensitive and -resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci within one hour using the automated GenomEra CDXTM PCR system. European Journal of Clinical Microbiology & Infectious Diseases. 31 (10), 2835-2842 (2012).
  4. Swaminathan, B., Feng, P. Rapid detection of food-borne pathogenic bacteria. Annual Review of Microbiology. 48 (1), 401-426 (1994).
  5. Ding, X., et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceeding of the National Academy of Sciences of the United States of America. 109 (28), 11105-11109 (2012).
  6. Karthick, S., et al. Acoustic impedance-based size independent isolation of circulating tumor cells from blood using acoustophoresis. Lab on a Chip. 18 (24), 2802 (2018).
  7. Lenshof, A., et al. Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab on a Chip. 12 (7), 1210-1223 (2012).
  8. Persson, J., et al. Acoustic microfluidic chip technology to facilitate automation of phage display selection. The FEBS journal. 275 (22), 5657-5666 (2008).
  9. Klussmann, S. . The aptamer handbook: Functional oligonucleotides and their applications. , (2006).
  10. Ellington, A., Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346 (6287), 818-822 (1990).
  11. Tuerk, C., Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249 (4968), 505-510 (1990).
  12. Namnabat, M. S., et al. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Scientific Reports. 11 (1), 11326 (2021).
  13. Nimjee, S. M., et al. Aptamer as therapeutics. Annual Review of Pharmacology and Toxicology. 57, 61-79 (2017).
  14. Zhang, Y., et al. Recent advances in aptamer discovery and application. Molecules. 24 (5), 941 (2019).
  15. Park, J. W., et al. Acousto-microfluidics for screening of ssDNA aptamer. Scientific Reports. 6 (1), 1-9 (2016).
  16. Persson, J., et al. Acoustic microfluidic chip technology to facilitate automation of phage display selection. The FEBS Journal. 275 (22), 5657-5666 (2008).
  17. Van Toan, N., et al. An investigation of processes for glass micromachining. Micromachines. 7 (3), 51 (2016).
  18. Jansen, H., et al. A survey on the reactive ion etching of silicon in microtechnology. Journal of Micromechanics and Microengineering. 6 (1), 14 (1996).
  19. Hanneborg, A., et al. Silicon-to-silicon anodic bonding with a borosilicate glass layer. Journal of Micromechanics and Microengineering. 1 (3), 139 (1991).
  20. Mach, A. J., Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnology and bioengineering. 107 (2), 302-311 (2010).
  21. Wang, S., et al. Simple filter microchip for rapid separation of plasma and viruses from whole blood. International Journal of Nanomedicine. 7, 5019-5028 (2012).
  22. Ai, Y., et al. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Analytical Chemistry. 85 (19), 9126-9134 (2013).
  23. Ohlsson, P., et al. Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations. Scientific Reports. 8 (1), 1-11 (2018).
  24. Park, S., et al. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip. 11 (17), 2893-2900 (2011).
  25. Kim, U., Soh, H. T. Simultaneous sorting of multiple bacterial targets using integrated Dielectrophoretic-Magnetic Activated Cell Sorter. Lab on a Chip. 9 (16), 2313-2318 (2009).
  26. Cai, G., et al. A fluidic device for immunomagnetic separation of foodborne bacteria using self-assembled magnetic nanoparticle chains. Micromachines. 9 (12), 624 (2018).
check_url/kr/63300?article_type=t

Play Video

Cite This Article
Choi, H. J., Kim, B. W., Lee, S., Jeong, O. C. Microfluidic Acoustophoresis for Flowthrough Separation of Gram-Negative Bacteria using Aptamer Affinity Beads. J. Vis. Exp. (188), e63300, doi:10.3791/63300 (2022).

View Video