Summary

果蝇卵生过程中极化细胞内运输和基底膜蛋白分泌的共聚焦和超分辨率成像

Published: May 19, 2022
doi:

Summary

基底膜对于发育过程中的组织和器官形态发生至关重要。为了更好地理解导致该结构正确放置的机制,所提出的方案描述了使用共聚焦和超分辨率显微镜可视化和表征上皮细胞中基底膜蛋白的细胞内运输和分泌的方法。

Abstract

基底膜(BM) – 存在于上皮细胞基底侧的细胞外基质的特化片 – 对于上皮组织形态和器官形态的建立和维持至关重要。此外,BM对于组织建模至关重要,可作为信号平台,并提供外力来塑造组织和器官。尽管BM在正常发育和病理条件下发挥了许多重要作用,但控制含BM囊泡细胞内运输的生物学途径以及基础分泌如何导致BM蛋白极化沉积的生物学途径知之甚少。 果蝇 卵巢的滤泡上皮是研究BM膜蛋白基础沉积的优秀模型系统,因为它产生并分泌BM的所有主要成分。本文介绍了一种详细的方案,用于在 果蝇 卵巢的滤泡上皮中使用内源性标记的蛋白质对含BM的囊泡和沉积的BM进行染色和成像。该协议可用于解决定性和定量问题,其开发是为了适应高通量筛选,从而可以快速有效地鉴定上皮组织发育过程中极化细胞内运输和囊泡分泌所涉及的因素。

Introduction

基底膜(BM)是一层层状细胞贴壁细胞外基质(ECM)的薄片,对上皮结构和形态发生1至关重要。它包含约50种蛋白质,并且无处不在地存在于上皮细胞和内皮细胞的下方,以及鞘状的骨骼,光滑,心肌细胞和脂肪细胞123。上皮细胞基底侧BM的三个主要成分是胶原IV,珀列坎和层粘连蛋白。BM位于上皮细胞之下,负责许多功能,包括组织分离和屏障,生长和支持,以及细胞极化23456789101112.它作为信号平台的作用调节发育过程中上皮细胞和组织的形态和分化31314。此外,BM的错误调节和/或其完整性的破坏是许多病理状况的主要原因,包括肿瘤转移21516。尽管BM在组织和器官形态发生期间具有基本功能,但专用于极化细胞内运输和BM蛋白分泌的生物途径的组分尚不清楚。

为了研究含BM囊泡的细胞内运输和上皮细胞分泌BM蛋白,果蝇卵巢的滤泡上皮(FE)是一个强大的模型系统(图1)。果蝇卵巢由16-20个长的管状结构组成,称为卵形(图1A,B171819。每个卵巢都可以被认为是一条卵子装配线,随着卵室(每个卵室产生卵子)的年龄进展,从前端开始向后移动,直到成熟的卵子通过输卵管排出。每个卵室都由FE(体细胞卵泡细胞(FC)的单层)封装,该FE围绕中央生殖细胞(GC)。FE高度极化,具有明显的顶基极性,其中顶端结构域面向种系,BM蛋白在基底层分泌1819。FC积极分泌BM的所有主要成分,包括胶原IV,珀列康和层粘连蛋白2021。在上皮细胞(如FC)中,产生BM组分并且需要专门的极化分泌途径才能在细胞外沉积。例如,在BM最丰富的成分胶原IV(Coll IV)的情况下,尽管其产生和沉积是许多研究的重点,但围绕其极化细胞内运输和分泌的细节是模糊的。Coll IV在内质网(ER)中翻译,这也是每个原纤维 – 由三个多肽(两个α1链和一个α2链)组成 – 组装成三螺旋22的地方。适当的 Coll IV 折叠和功能需要 ER 伴侣和酶,包括赖氨酰基和脯氨酰羟基酶,如 Plod 和 PH4αEFB202223242526。这些翻译后酶调节Col IV的ER分选,因为每个酶的丢失导致Coll IV被困在基础ER2023242526中。然后,新合成的Colli IV在COPII涂层囊泡中退出高尔基体的ER。货物受体Tango1有助于将胶原蛋白包装成可观的高尔基体结合囊泡,该囊泡可以容纳大型多聚体蛋白质2027。一旦将Coliv包装成细胞内胞囊泡,它就会从上皮细胞特异性地分泌基底。为了将BM沉积引导到基底侧,上皮细胞需要另一组专门用于极化BM分泌的因子。使用果蝇卵巢的FE,已经表征了这种新型细胞过程的一些组分,包括核苷酸交换因子(GEFs)岩壁和地层,GTPases Rab8和Rab10,以及磷酸肌醇PI(4,5)P2和激肽1和3运动蛋白20,28293031的水平.这些成分对于确保BM蛋白的极化分布至关重要。

为了监测FE中BM蛋白的细胞内定位,可以使用内源性标记的基底膜蛋白(蛋白质陷阱),例如维京-GFP(Vkg-GFP或α2 Coll IV-GFP)和珍珠-GFP(Pcan-GFP)3233。这些蛋白质陷阱谱系已被证明可以准确反映BM蛋白的内源性分布,并允许更灵敏地检测水泡运输2830。首先使用Vkg-GFP和Pcan-GFP 20,282930的蛋白质陷阱线表征了FE中BM极化沉积所涉及的组分。蛋白质陷阱可用于不同的遗传背景,包括突变体和Gal434。此外,蛋白质捕集器可以与荧光染料和/或荧光免疫染色结合使用,从而在比较野生型和突变条件35时精确表征BM蛋白的定位。

为了准确有效地评估含BM蛋白囊泡的分布和定位,共聚焦激光扫描显微镜(CLSM)和超分辨率成像技术对其他成像方法具有显着优势。这些方法将高分辨率成像与相对易用性相结合。CLSM是一种显微镜技术,通过使用振镜以光栅扫描方式用激光扫描样品来提高光学分辨率。针孔孔径是共聚焦显微镜的核心部件。通过阻挡来自焦平面上方或下方的失焦信号,针孔孔径可在z轴36中产生非常优越的分辨率。这也使得在z平面中获得一系列图像成为可能,称为z-stack,对应于一系列光学截面。z-stack随后在成像软件的帮助下, 通过 3D重建创建标本的3D图像。与共聚焦显微镜不同,传统的落射荧光(宽视场)显微镜允许失焦光有助于提高图像质量,从而降低图像分辨率和对比度3637。这使得落射荧光显微镜在研究蛋白质定位或共定位时不太有吸引力。

虽然CLSM是各种应用的合适方法,包括BM蛋白细胞内运输的成像和表征,但当对低于阿贝的光衍射极限(200-250nm)的样品进行成像时,它仍然存在问题。当对此类样品进行成像时,共聚焦显微镜,特别是在使用油物镜时,可以产生高分辨率。然而,超分辨率技术超越了共聚焦显微镜的极限。有多种方法可以实现超分辨率显微镜,每种方法都有特定的分辨率限制,并且每种方法都适用于不同的分析。这些方法包括光活化定位显微镜(PALM)或随机光学重建显微镜(STORM),受激发射耗尽显微镜(STED),结构化照明显微镜(SIM)和Airyscan(超分辨率)显微镜383940414243444546.虽然艾瑞斯堪的分辨率比PALM/风暴、STED和SIM更粗糙,但它仍然可以达到高达~120纳米的分辨率(大约是CLSM分辨率的两倍)。此外,这种超分辨率显微镜方法已被证明在对厚样品和信噪比为4748的低样品进行成像时比SIM和其他超分辨率技术具有优势。

艾利斯扫描是一种相对较新的超分辨率共聚焦显微镜技术46。与传统的CLSM不同,传统CLSM使用针孔和单点检测器来抑制失焦光,这种超分辨率方法使用32通道砷化镓磷化物(GaAsP)光电倍增管区域检测器,收集每个扫描位置45的所有光。32 个探测器中的每一个都作为一个小针孔工作,将针孔尺寸从传统的 1.0 Airy 单元 (A.U.) 减小到增强的 0.2 A.U.,从而实现更高的分辨率和信噪比,同时保持 1.25 A.U. 直径45 的效率。此外,Airyscan 使用的线性反卷积可使分辨率45 提高多达 2 倍。考虑到这一点,CLSM,特别是超分辨率显微镜,非常适合研究BM蛋白和调节BM蛋白基础沉积的蛋白质,因为它们可以产生非常高分辨率的图像用于定位和共定位研究,从而为控制这些过程的空间,时间和分子事件提供新的见解。

可用于执行定位实验的共聚焦显微镜的另一种方法是图像反卷积。由于宽视场显微镜允许失焦光到达探测器,因此可以应用数学和计算反卷积算法从宽视场显微镜获得的图像中去除或重新分配失焦光,从而提高图像49的分辨率和对比度。反卷积算法还可以应用于共聚焦图像,以进一步提高分辨率和对比度,从而产生几乎与超分辨率显微镜50相当的最终图像。Airyscan利用基于韦纳滤波器的反卷积以及谢泼德的像素重新分配,从而大大提高了空间分辨率和信噪比。与共聚焦显微镜相比,当使用这种超分辨率显微镜技术4551时,在所有三个空间维度(x和y中为120nm,z中为350nm)的分辨率提高了2倍。

该手稿提供了详细和优化的方案,以染色,获取和可视化BM蛋白的细胞内运输和沉积,使用 果蝇 卵巢的FE作为模型系统,结合共聚焦和超分辨率显微镜。表达内源性标记基底膜蛋白(例如 Vkg-GFP 和 Pcan-GFP)的 果蝇 谱系是可视化 BM 蛋白运输和分泌的有效且准确的工具。此外,它们可以很容易地用于不同的遗传背景,包括突变体和 Gal4 / UAS34。虽然推荐使用内源性标记的基底膜蛋白,但针对特定BM蛋白的抗体的使用也与所述方案相容。这些方案对于有兴趣使用共聚焦和超分辨率成像研究细胞内运输和完整上皮组织中BM蛋白分泌的科学家特别有用。此外,将上皮组织分析与 果蝇 遗传学的扩展工具相结合的能力使这种方法特别强大。最后,这些方案可以很容易地适应研究水泡运输和其他感兴趣蛋白质的分选。

Protocol

1. 卵巢解剖的苍蝇准备 将10-15只所需基因型的 黑腹果蝇雌性苍蝇(1-2天大)放入含有〜8mL 果蝇 培养基的狭窄小瓶中,撒上少量颗粒状面包酵母,然后在25°C解剖前2-3天。 在小瓶中添加一些雄性可以提高卵室产量。但是,请确保苍蝇总数不超过20只,因为这会对卵巢发育产生负面影响。注:关于 果蝇 雄性和雌性的描述,以及对于没有 果蝇 经验的…

Representative Results

本文描述的方法可用于有效和准确地成像和表征极化上皮细胞中BM蛋白的细胞内运输和分泌,例如 果蝇 卵巢的FE。接下来,我们提供使用所述方法获得的预期结果,以及有用的建议和潜在的陷阱。为此,使用内源性标记的Vkg(果蝇 Col IV)的Vkg-GFP。然而,其他内源性标记的BM蛋白(如Pcan-GFP)可以达到相同的结果。 设置最佳采集参数(…

Discussion

BM对于胚胎和器官形态发生以及成人生理功能至关重要。此外,BM作为建立和维持上皮极性的信号平台,并为组织提供支持2。然而,调节BM蛋白正确放置的机制知之甚少。要更好地了解专门用于BM蛋白细胞内运输和极化分泌的生物途径,需要仔细分析这些途径的成分及其在BM加工中的作用。实现这一目标的一种方法是使用共聚焦和超分辨率成像。在这里,我们描述了用于制备和染?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢朱莉·默克尔对手稿的有益评论。这项工作得到了NIH授予O.D.R15GM137236的支持。共聚焦和超分辨率图像是使用蔡司LSM 900和艾瑞斯扫描2拍摄的,由NSF MRI授权2018748购买。

Materials

Alexa Fluor 546 phalloidin Invitrogen A22283 F-Actin Stain (1/500 of 66µM)
Alexa Fluor 647 phalloidin Invitrogen A22287 F-Actin Stain (1/100 of 66µM))
Anti-GM130 Antibody abcam ab30637 For Golgi Stain (colocalization); use as concentration of 7µg/uL
Aqua-Polymount Polysciences, Inc. 1860620 Mounting Medium
Bakers Yeast (Active Dry Yeast) Genesee Scientific 62-103 To fatten the overies for dissection
Bovine Serum Albumin (30% solution) Sigma-Aldrich A7284 For blocking solution
Depression wells Electron Microscopy Sciences 7156101 For dissection (glass concavity slide can be used instead)
Dissecting needle Fisher scientifc 13-820-024
Drosophila Incubator Genesee Scientific/Invictus
Fly Stock: Perlecan-GFP Drosophila line (ZCL1700) Morin et al., 2001
Fly Stock: UAS-Crag RNAi line (TRIP line HMS00241) Bloomington Drosophila Stock Center 33594 RNAi against Crag
Fly Stock: Viking-GFP Drosophila line (CC00791) Buszczak et al., 2007
Fly Stock: Vkg-GFP, tj-Gal4 Devergne et al., 2017. Drive the expression of Crag RNAi in the FE
Forceps (Dumont 5) Fine Science Tools 11251-30 For dissection
Glass Concavity Slide Electron Microscopy Sciences 7187804 For dissection (depression wells can be used instead)
Goat anti-Rabbit IgG, Alexa Fluor 568 Invitrogen A11036 Secondary antibody (GM130 antibody) (5 µg/mL)
Hoechst (Hoechst 33342) Invitrogen H3570 DNA Stain (1 ug/mL)
Kimwipes Kimtech Fisher Scientific: 06-666 Delicate task wipers
Leica Fluorescent Stereo Microscope  M165 FC Leica For ovary imaging
Microscope Slides Corning 294875X25 Microscope Slides
Nutating platform rocker Corning Life Sciences 6720 For ovary fixation and staining
Nutri-Fly BF Genesee Scientific 66-121 Fly Food
Paraformaldehyde 20% Solution Electron Microscopy Sciences Fisher Scientific: 15713 For PFA 4%
Phosphate Buffered Saline Tablets Fisher scientific BP2944100 For PBS solution
ProLong Glass Antifade Mountant Invitrogen P36980 Mounting Medium
Square Cover Glass Corning 285022 Cover glass for microscope slides
Triton x-100 Sigma-Aldrich 9036-19-5 For PBST
Zeiss LSM 900 with Airyscan 2 Zeiss Confocal and super-resolution Microscope
Zeiss Stemi 305 Stereo Microscope Zeiss Dissecting microscope
Zeiss Zen Software version 3.3 (Blue Edition) Zeiss Image acquisition and processing

References

  1. Halfter, W., et al. New concepts in basement membrane biology. FEBS Journal. 282 (23), 4466-4479 (2015).
  2. Sekiguchi, R., Yamada, K. M. Basement membranes in development and disease. Current Topics in Developmental Biology. 130, 143-191 (2018).
  3. Jayadev, R., Sherwood, D. R. Basement membranes. Current Biology. 27 (6), 207-211 (2017).
  4. Engelhardt, B., Vajkoczy, P., Weller, R. O. The movers and shapers in immune privilege of the CNS. Nature Immunology. 18 (2), 123-131 (2017).
  5. Kefalides, N., Borel, J. Functions of basement membranes. Current Topics in Membranes. 56, 79-111 (2005).
  6. Kefalides, N., Borel, J. Basement membranes in development. Current Topics in Membranes. 56, 43-77 (2005).
  7. Halfter, W., et al. The bi-functional organization of human basement membranes. PLoS One. 8 (7), 67660 (2013).
  8. Morrissey, M. A., Sherwood, D. R. An active role for basement membrane assembly and modification in tissue sculpting. Journal of Cell Science. 128 (9), 1661-1668 (2015).
  9. Miller, R. T. Mechanical properties of basement membrane in health and disease. Matrix Biology. 57-58, 366-373 (2017).
  10. Mak, K. M., Mei, R. Basement membrane type IV collagen and laminin: An overview of their biology and value as fibrosis biomarkers of liver disease. Anatomical Record. 300 (8), 1371-1390 (2017).
  11. Fukumoto, S., et al. Laminin α5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. Journal of Biological Chemistry. 281 (8), 5008-5016 (2006).
  12. Plachot, C., et al. Factors necessary to produce basoapical polarity in human glandular epithelium formed in conventional and high-throughput three-dimensional culture: Example of the breast epithelium. BMC Biology. 7, 77 (2009).
  13. Bonnans, C., Chou, J., Werb, Z. Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology. 15 (12), 786-801 (2014).
  14. Loscertales, M., et al. Type IV collagen drives alveolar epithelial-endothelial association and the morphogenetic movements of septation. BMC Biology. 14, 59 (2016).
  15. Kalluri, R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer. 3 (6), 422-433 (2003).
  16. Royer, C., Lu, X. Epithelial cell polarity: A major gatekeeper against cancer. Cell Death and Differentiation. 18 (9), 1470-1477 (2011).
  17. McLaughlin, J. M., Bratu, D. P. Drosophila melanogaster oogenesis: An overview. Methods in Molecular Biology. 1328, 1-20 (2015).
  18. Wu, X., Tanwar, P. S., Raftery, L. A. Drosophila follicle cells: morphogenesis in an eggshell. Seminars in Cell & Developmental Biology. 19 (3), 271-282 (2008).
  19. Horne-Badovinac, S., Bilder, D. Mass transit: Epithelial morphogenesis in theDrosophila egg chamber. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 232 (3), 559-574 (2005).
  20. Lerner, D. W., et al. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Developmental Cell. 24 (2), 159-168 (2013).
  21. Schneider, M., et al. Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization. Development. 133 (19), 3805-3815 (2006).
  22. Mao, M., Alavi, M. V., Labelle-Dumais, C., Gould, D. B. Type IV collagens and basement membrane diseases: Cell biology and pathogenic mechanisms. Current Topics in Membranes. 76, 61-116 (2015).
  23. Myllylä, R., et al. Expanding the lysyl hydroxylase toolbox: new insights into the localization and activities of lysyl hydroxylase 3 (LH3). Journal of Cellular Physiology. 212 (2), 323-329 (2007).
  24. Myllyharju, J., Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends in Genetics: TIG. 20 (1), 33-43 (2004).
  25. Norman, K. R., Moerman, D. G. The let-268 locus of Caenorhabditis elegans encodes a procollagen lysyl hydroxylase that is essential for type IV collagen secretion. 발생학. 227 (2), 690-705 (2000).
  26. Rautavuoma, K., et al. Premature aggregation of type IV collagen and early lethality in lysyl hydroxylase 3 null mice. Proceedings of the National Academy of Sciences of the United States of America. 101 (39), 14120-14125 (2004).
  27. Saito, K., et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell. 136 (5), 891-902 (2009).
  28. Denef, N., et al. Crag regulates epithelial architecture and polarized deposition of basement membrane proteins in Drosophila. Developmental Cell. 14 (3), 354-364 (2008).
  29. Devergne, O., Sun, G. H., Schüpbach, T. Stratum, a homolog of the human GEF Mss4, partnered with Rab8, controls the basal restriction of basement membrane proteins in epithelial cells. Cell Reports. 18 (8), 1831-1839 (2017).
  30. Devergne, O., Tsung, K., Barcelo, G., Schüpbach, T. Polarized deposition of basement membrane proteins depends on Phosphatidylinositol synthase and the levels of Phosphatidylinositol 4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America. 111 (21), 7689-7694 (2014).
  31. Zajac, A. L., Horne-Badovinac, S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Current Biology: CB. 32 (4), 735-748 (2022).
  32. Morin, X., Daneman, R., Zavortink, M., Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 98 (26), 15050 (2001).
  33. Buszczak, M., et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. 유전학. 175 (3), 1505-1531 (2007).
  34. Hales, K. G., Korey, C. A., Larracuente, A. M., Roberts, D. M. Genetics on the fly: A primer on the drosophila model system. 유전학. 201 (3), 815-842 (2015).
  35. Dunst, S., Tomancak, P. Imaging flies by fluorescence microscopy: Principles, technologies, and applications. 유전학. 211 (1), 15-34 (2019).
  36. Elliott, A. D. Confocal Microscopy: Principles and Modern Practices. Current Protocols in Cytometry. 92 (1), 68 (2020).
  37. Sanderson, M. J., Smith, I., Parker, I., Bootman, M. D. Fluorescence microscopy. Cold Spring Harbor Protocols. 2014 (10), (2014).
  38. Liu, S., Huh, H., Lee, S. H., Huang, F. Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens. Annual Review of Biomedical Engineering. 22, 155-184 (2020).
  39. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods. 3 (10), 793-795 (2006).
  40. Huang, B., Babcock, H., Zhuang, X. Breaking the diffraction barrier: Super-resolution imaging of cells. Cell. 143 (7), 1047-1058 (2010).
  41. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313 (5793), 1642-1645 (2006).
  42. Heintzmann, R., Huser, T. Super-resolution structured illumination microscopy. Chemical Reviews. 117 (23), 13890-13908 (2017).
  43. Müller, T., Schumann, C., Kraegeloh, A. STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem: A. European Journal of Chemical Physics and Physical Chemistry. 13 (8), 1986-2000 (2012).
  44. Feng, H., Wang, X., Xu, Z., Zhang, X., Gao, Y. Super-resolution fluorescence microscopy for single cell imaging. Advances in Experimental Medicine and Biology. 1068, 59-71 (2018).
  45. Huff, J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nature Methods. 12, (2015).
  46. Wu, X., Hammer, J. A. ZEISS Airyscan: Optimizing usage for fast, gentle, super-resolution imaging. Methods in Molecular Biology. 2304, 111-130 (2021).
  47. Sivaguru, M., et al. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microscopy Research and Technique. 81 (2), 101-114 (2018).
  48. Tröger, J., et al. Comparison of multiscale imaging methods for brain research. Cells. 9 (6), 1377 (2020).
  49. Zhang, W., et al. Virtual single-pixel imaging-based deconvolution method for spatial resolution improvement in wide-field fluorescence microscopy. Biomedical Optics Express. 11 (7), 3648 (2020).
  50. He, T., Sun, Y., Qi, J., Hu, J., Huang, H. Image deconvolution for confocal laser scanning microscopy using constrained total variation with a gradient field. Applied Optics. 58 (14), 3754 (2019).
  51. Korobchevskaya, K., Lagerholm, B. C., Colin-York, H., Fritzsche, M. Exploring the Potential of Airyscan Microscopy for Live Cell Imaging. Photonics. 4 (3), 41 (2017).
  52. Pulver, S. R., Berni, J. The fundamentals of flying: Simple and inexpensive strategies for employing drosophila genetics in neuroscience teaching laboratories. Journal of Undergraduate Neuroscience Education. 11 (1), 139-148 (2012).
  53. Wong, L. C., Schedl, P. Dissection of drosophila ovaries. Journal of Visualized Experiments: JoVE. (1), e52 (2006).
  54. Hudson, A. M., Cooley, L. Methods for studying oogenesis. Methods. 68 (1), 207-217 (2014).
  55. Thompson, L., Randolph, K., Norvell, A. Basic techniques in drosophila ovary preparation. Methods in Molecular Biology. 1328, 21-28 (2015).
  56. Long, D. E., et al. A guide for using NIH Image J for single slice cross-sectional area and composition analysis of the thigh from computed tomography. PLoS One. 14 (2), 0211629 (2019).
  57. Cetera, M., Lewellyn, L., Horne-Badovinac, S. Cultivation and live imaging of drosophila ovaries. Methods in Molecular Biology. 1478, 215-226 (2016).
  58. Bier, E., et al. Advances in engineering the fly genome with the CRISPR-Cas system. 유전학. 208 (1), 1-18 (2018).
check_url/kr/63778?article_type=t

Play Video

Cite This Article
Shah, H. P., Devergne, O. Confocal and Super-Resolution Imaging of Polarized Intracellular Trafficking and Secretion of Basement Membrane Proteins During Drosophila Oogenesis. J. Vis. Exp. (183), e63778, doi:10.3791/63778 (2022).

View Video