Summary

长期和短期造血干细胞的分离方法

Published: May 19, 2023
doi:

Summary

我们提出了使用Hoxb5报告系统分离长期造血干细胞(LT-HSC)和短期造血干细胞(ST-HSC)的分步方案。

Abstract

自我更新能力和多谱系分化潜力通常被认为是造血干细胞(HSCs)的决定性特征。然而,大量研究表明,HSC隔室中存在功能异质性。最近的单细胞分析报告了HSC区室内具有不同细胞命运的HSC克隆,这被称为偏倚HSC克隆。异质性或可重复性差的结果背后的机制知之甚少,特别是关于通过常规免疫染色移植纯化的HSC级分时的自我更新时间。因此,建立一种可重复的长期HSC(LT-HSC)和短期HSC(ST-HSC)的分离方法,由其自我更新的长度定义,对于克服这个问题至关重要。使用无偏的多步骤筛选,我们鉴定了一种转录因子 Hoxb5,它可能是小鼠造血系统中LT-HSC的独家标志物。基于这一发现,我们建立了 Hoxb5 报告小鼠系,并成功分离出LT-HSC和ST-HSC。在这里,我们描述了使用 Hoxb5 报告系统分离LT-HSC和ST-HSC的详细协议。这种分离方法将有助于研究人员更好地了解自我更新的机制以及HSC隔室中这种异质性的生物学基础。

Introduction

造血干细胞(HSCs)具有自我更新能力和多能性,位于造血层次结构的顶点12。1988年,Weissman及其同事首次证明可以使用流式细胞术3实现小鼠HSC的分离。随后,据报道,由细胞表面标志物组合定义的部分Lineage-c-Kit+Sca-1 + CD150 + CD34 / loFlk2含有小鼠4,5,6,78中的所有HSC。

免疫表型定义的(谱系c-Kit+Sca-1+CD150+CD34/loFlk2)HSC(以下简称pHSC)以前被认为是功能同质的。然而,最近的单细胞分析显示,pHSCs在其自我更新能力910和多能性1112方面仍表现出异质性。具体而言,pHSC分数中似乎存在两个自我更新能力的人群:具有持续自我更新能力的长期造血干细胞(LT-HSCs)和具有短暂自我更新能力的短期造血干细胞(ST-HSCs)910

迄今为止,区分LT-HSC和ST-HSC的自我更新能力的分子机制仍然知之甚少。根据细胞的自我更新能力分离两个细胞群并发现潜在的分子机制至关重要。还引入了几种报告系统来纯化LT-HSC131415;然而,每个报告系统定义的LT-HSC纯度是可变的,迄今为止尚未实现独家LT-HSC纯化。

因此,开发LT-HSC和ST-HSC的分离系统将加速pHSC部分自我更新能力的研究。在分离LT-HSC和ST-HSCs时,一项使用多步骤,无偏倚筛选的研究确定了单个基因Hoxb5,该基因在pHSC部分16中异质表达。此外,对Hoxb5报告小鼠的骨髓分析显示,大约20%-25%的pHSC部分由Hoxb5 pos细胞组成。使用Hoxb5 pos pHSC和Hoxb5阴性pHSC的竞争性移植测定显示,只有Hoxb5pos pHSC具有长期自我更新能力,而Hoxb5阴性pHSC在短时间内失去其自我更新能力,表明Hoxb5在pHSC部分16中识别LT-HSC。

在这里,我们演示了使用 Hoxb5 报告系统分离LT-HSC和ST-HSC的分步协议。此外,我们提出了一种竞争性移植测定法来评估Hoxb5pos / neg pHSC的自我更新能力(图1)。该 Hoxb5 报告系统使我们能够前瞻性地分离LT-HSC和ST-HSC,并有助于了解LT-HSC特异性特征。

Protocol

所有描述的动物实验都得到了RIKEN生物系统动力学研究中心的批准。 1.受体小鼠的预处理 准备8-10周龄的雄性C57BL / 6同源小鼠作为受体小鼠。受体小鼠的数量取决于实验方案。我们通常为每种情况准备10-20只小鼠。用补充有恩诺沙星(170mg / L)的灭菌水喂养小鼠。由于受辐照的受体小鼠极易感染,因此请保持笼子尽可能清洁。注意:在照射前24小时?…

Representative Results

以前,已经使用竞争性移植测定法测量了自我更新能力,其中供体HSC被认为只有在观察到受体外周血中的多谱系供体细胞时才保持其自我更新能力17。此外,一些报告将LT-HSC定义为在第二次骨髓移植几个月后继续产生外周血细胞的细胞10,18。因此,为了比较它们的自我更新能力,将从Hoxb5报告小鼠中分离出的10只Hoxb5pos或Hoxb5…

Discussion

传统上,已经制备了细胞表面标记定义的HSCs来研究HSC的功能,例如自我更新能力和多效性192021。然而,免疫表型定义的(谱系c-Kit+Sca-1+CD150+CD34/loFlk2)HSC部分包含两个离散的HSC群体:LT-HSC和ST-HSC910因此,对真?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们非常感谢Hiroshi Kioninari在RIKEN BDR提供的动物护理和提供受体小鼠,以及神户大学实验室管理的小贺瞳,长坂加代子和宫桥正树。作者也非常感谢对这项工作的持续支持。Masanori Miyanishi得到了日本科学促进会(JSPS)KAKENHI资助号JP17K07407和JP20H03268,Mochida医学和药物研究纪念基金会,日本生命科学基金会,武田科学基金会,安斯泰来代谢紊乱研究基金会和AMED-PRIME,AMED的支持,资助号JP18gm6110020。 坂卷太郎由JSPS KAKENHI授权号JP21K20669和JP22K16334支持,并得到以下机构的支持JSPS核心到核心计划和RIKEN初级研究助理计划。Katsuyuki Nishi得到了JSPS授权号KAKENHI JP18J13408的支持。

Materials

0.2 mL Strip of 8 Tubes, Dome Cap SSIbio 3230-00
0.5M EDTA pH 8.0 Iinvtrogen AM9260G
100 µm Cell Strainer Falcon 352360
30G insulin syringe BD 326668
40 µm Cell Strainer Falcon 352340
5 mL Round Bottom Polystyrene Test Tube, with Cell Strainer Snap Cap FALCON 352235
7-AAD Viability Staining Solution BioLegend 420404
96 well U-Bottom FALCON 351177
Anti-APC-MicroBeads Milteny biotec 130-090-855
Aspirator with trap flask Biosan FTA-1
B220-Alexa Fluor 700 (RA3-6B2) BioLegend 103232
B220-Biotin (RA3-6B2) BioLegend 103204
B220-BV786 (RA3-6B2) BD Biosciences 563894
B6.CD45.1 congenic mice  Sankyo Labo Service N/A
Baytril 10% BAYER 341106546
BD FACS Aria II special order system  BD N/A
Brilliant stain buffer BD 566349
CD11b-Alexa Fluor 700 (M1/70) BioLegend 101222
CD11b-Biotin (M1/70) BioLegend 101204
CD11b-BUV395 (M1/70) BD Biosciences 563553
CD11b-BV711 (M1/70) BD Biosciences 563168
CD127-Alexa Fluor 700 (A7R34) Invitrogen 56-1271-82
CD150-BV421 (TC15-12F12.2) BioLegend 115943
CD16/CD32-Alexa Fluor 700 (93) Invitrogen 56-0161-82
CD34-Alexa Fluor 647 (RAM34) BD Biosciences 560230
CD34-FITC (RAM34) Invitrogen 11034185
CD3-Alexa Fluor 700 (17A2) BioLegend 100216
CD3ε -Biotin (145-2C11) BioLegend 100304
CD3ε -BV421 (145-2C11) BioLegend 100341
CD45.1/CD45.2 congenic mice N/A N/A Bred in our Laboratory
CD45.1-FITC (A20) BD Biosciences 553775
CD45.2-PE (104) BD Biosciences 560695
CD4-Alexa Fluor 700 (GK1.5) BioLegend 100430
CD4-Biotin (GK1.5) BioLegend 100404
CD8a-Alexa Fluor 700 (53-6.7) BioLegend 100730
CD8a-Biotin (53-6.7) BioLegend 100704
Centrifuge Tube 15ml NICHIRYO 00-ETS-CT-15
Centrifuge Tube 50ml NICHIRYO 00-ETS-CT-50
c-Kit-APC-eFluor780 (2B8) Invitrogen 47117182
D-PBS (-) without Ca and Mg, liquid  Nacalai 14249-24
Fetal Bovine Serum Thermo Fisher 10270106
Flk2-PerCP-eFluor710 (A2F10) eBioscience 46135182
FlowJo version 10 BD Biosciences  https://www.flowjo.com/solutions/flowjo
Gmmacell 40 Exactor Best theratronics N/A
Gr-1-Alexa Fluor 700 (RB6-8C5) BioLegend 108422
Gr-1-Biotin (RB6-8C5) BioLegend 108404
Hoxb5-tri-mCherry mice (C57BL/6J background)  N/A N/A Bred in our Laboratory
IgG from rat serum, technical grade, >=80% (SDS-PAGE), buffered aqueous solution Sigma-Aldrich I8015-100MG
isoflurane Pfizer 4987-114-13340-3 
Kimwipes S200 NIPPON PAPER CRECIA  6-6689-01
LS Columns Milteny biotec 130-042-401
Lysis buffer  BD 555899
MACS  MultiStand Milteny biotec 130-042-303
Microplate for Tissue Culture (For Adhesion Cell) 6Well IWAKI 3810-006
MidiMACS Separator Milteny biotec 130-042-302
Mouse Pie Cages Natsume Seisakusho KN-331
Multipurpose refrigerated Centrifuge TOMY EX-125
NARCOBIT-E (II) Natsume Seisakusho KN-1071-I
NK-1.1-PerCP-Cy5.5 (PK136) BioLegend 108728
Penicillin-Streptomycin Mixed Solution nacalai 26253-84
Porcelain Mortar φ120mm with Pestle Asone 6-549-03
Protein LoBind Tube 1.5 mL  Eppendorf 22431081
Sca-I-BUV395 (D7) BD Biosciences 563990
Stainless steel scalpel blade FastGene FG-B2010
Streptavidin-BUV737 BD Biosciences 612775
SYTOX-red Invitrogen S34859
Tailveiner Restrainer for Mice standard Braintree TV-150 STD
TCRb-BV421 (H57-597) BioLegend 109230
Ter-119-Alexa Fluor 700 (TER-119) BioLegend 116220
Ter-119-Biotin (TER-119) BioLegend 116204
Terumo 5ml Concentric Luer-Slip Syringe TERUMO SS-05LZ
Terumo Hypodermic Needle 23G x 1 TERUMO NN-2325-R

References

  1. Weissman, I. L., Shizuru, J. A. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 112 (9), 3543-3553 (2008).
  2. Majeti, R., Park, C. Y., Weissman, I. L. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 1 (6), 635-645 (2007).
  3. Spangrude, G. J., Heimfeld, S., Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science. 241 (4861), 58-62 (1988).
  4. Ogawa, M., et al. Expression and function of c-kit in hemopoietic progenitor cells. Journal of Experimental Medicine. 174 (1), 63-71 (1991).
  5. Ikuta, K., Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proceedings of the National Academy of Sciences of the United States of America. 89 (4), 1502-1506 (1992).
  6. Osawa, M., Hanada, K., Hamada, H., Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 273 (5272), 242-245 (1996).
  7. Christensen, J. L., Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells. Proceedings of the National Academy of Sciences of the United States of America. 98 (25), 14541-14546 (2001).
  8. Kiel, M. J., et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121 (7), 1109-1121 (2005).
  9. Morrison, S. J., Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1 (8), 661-673 (1994).
  10. Spangrude, G. J., Brooks, D. M., Tumas, D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: In vivo expansion of stem cell phenotype but not function. Blood. 85 (4), 1006-1016 (1995).
  11. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M., de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. Journal of Experimental Medicine. 208 (13), 2691-2703 (2011).
  12. Grover, A., et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nature Communications. 7, 11075 (2016).
  13. Kataoka, K., et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. Journal of Experimental Medicine. 208 (12), 2403-2416 (2011).
  14. Gazit, R., et al. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. Journal of Experimental Medicine. 211 (7), 1315-1331 (2014).
  15. Acar, M., et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 526 (7571), 126-130 (2015).
  16. Chen, J. Y., et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 530 (7589), 223-227 (2016).
  17. Ema, H., et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Developmental Cell. 8 (6), 907-914 (2005).
  18. Morita, Y., Ema, H., Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. Journal of Experimental Medicine. 207 (6), 1173-1182 (2010).
  19. Yamamoto, R., et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 154 (5), 1112-1126 (2013).
  20. Fathman, J. W., et al. Upregulation of CD11A on hematopoietic stem cells denotes the loss of long-term reconstitution potential. Stem Cell Reports. 3 (5), 707-715 (2014).
  21. Oguro, H., Ding, L., Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 13 (1), 102-116 (2013).
  22. Haas, S., Trumpp, A., Milsom, M. D. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell. 22 (5), 627-638 (2018).
  23. Schroeder, T. Hematopoietic stem cell heterogeneity: Subtypes, not unpredictable behavior. Cell Stem Cell. 6 (3), 203-207 (2010).
  24. Muller-Sieburg, C. E., Sieburg, H. B., Bernitz, J. M., Cattarossi, G. Stem cell heterogeneity: Implications for aging and regenerative medicine. Blood. 119 (17), 3900-3907 (2012).
  25. Duran-Struuck, R., Dysko, R. C. Principles of bone marrow transplantation (BMT): Providing optimal veterinary and husbandry care to irradiated mice in BMT studies. Journal of the American Association for Laboratory Animal Science. 48 (1), 11-22 (2009).
  26. Nishi, K., et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. British Journal of Haematology. 196 (3), 711-723 (2022).
  27. Sakamaki, T., et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochemical and Biophysical Research Communications. 539, 34-41 (2021).

Play Video

Cite This Article
Nishi, K., Nagasaka, A., Sakamaki, T., Sadaoka, K., Miyanishi, M. Isolation Method for Long-Term and Short-Term Hematopoietic Stem Cells. J. Vis. Exp. (195), e64488, doi:10.3791/64488 (2023).

View Video