Summary

使用单分子DNA拉伸含量直接观察DNA复制的酶

Published: March 23, 2010
doi:

Summary

我们描述了一个观察单个DNA分子介导的蛋白质的噬菌体复制系统的实时复制的方法。

Abstract

我们描述了一个观察单个DNA分子介导的蛋白质的噬菌体复制系统的实时复制的方法。线性λDNA被修改,有一个链上的生物素,地高辛基团上的同一条电缆的另一端。生物素标记的一端连接到一个官能的玻璃盖玻片和digoxigeninated结束的小珠。一个流细胞表面上这些DNA珠系绳大会允许应用层流珠施加的阻力。因此,被拉伸的DNA靠近和平行的流量(图1)确定力在盖玻片表面。测量长度的DNA监测珠的位置。单双链DNA之间的长度差异,利用获得的实时信息,在交岔路口的复制蛋白的活性。测量珠的位置可以精确测定平仓DNA和聚合(图2)的速率和processivities。

Protocol

1。 DNA复制模板 DNA的反应是一个线性的λDNA寡核苷酸退火形成一个复制叉的修改。此外,生物素连接的λDNA链的结束,一个地高辛基团连接到同一条 1的另一端。 材料:λ噬菌体的DNA,寡核苷酸:生物素化的叉臂(答:5' -生物素- AAAAAAAAAAAAAAAAGAGTACTGTACGATCTAGCATCAATCACAGGGTCAGGTTCGTTATTGTCCAACTTGCTGTCC – 3'),λ互补叉臂(B:5' – GGGCGGCGACCTGGA…

Discussion

重要的是要确保对珠层流曳力不影响酶活性的复制蛋白。举例来说,一个3 PN的力量,对应到0.012毫升/分钟的流速不影响复制的DNA领先链。但它的影响,采取协调DNA合成过程中酶的活性,因此将减少到1.5 PN。拖曳力可以很容易地控制,通过改变流速或流 5的宽度。

DNA拉伸实验采用双和单链DNA之间的长度差异。在实验中所描述这里的单链DNA双链DNA转换作为一个领先的?…

Acknowledgements

拉伸实验的DNA的发展援助,钟奉李保布莱尼和萨米尔哈姆丹。这项工作是由美国国立卫生赠款查尔斯理查德森(GM54397),安托万车Oijen(GM077248)研究院的支持。

Materials

Material Name Tipo Company Catalogue Number Comment
Bacteriophage λ DNA   New England Biolabs N3011L  
DNA Oligonucleotides   Integrated DNA Technologies    
T4 DNA Ligase   New England Biolabs M0202L  
T4 Polynucleotide Kinase   New England Biolabs M0201L  
α-digoxigenin Fab   Roche 11214667001  
Tosyl Activated Beads   Dynal/Invitrogen 142-03  
Magnetic Separator   Invitrogen Dynal MPC  
3-aminopropyl-triethoxysilane   Sigma A3648 Other aminosilanes can be used or mixed with non-amine reactive silanes for sparser surfaces
Succinimidyl propionate PEG   Nektar   Similar PEGs can be purchased from Nanocs, CreativePEGWorks, etc.
Biotin-PEG-NHS   Nektar   Similar PEGs can be purchased from Nanocs, CreativePEGWorks, etc.
Double-sided tape   Grace BioLabs SA-S-1L 100 μm thickness
Quartz slide   Technical Glass 20 mm (W)x 50 mm (L)x 1mm (H) Size to fit on coverslips. Drill holes with diamond-tip drill bits (DiamondBurs.net)
Polyethylene tubing   Becton Dickinson 427416 0.76 mm ID, 1.22 OD
Other size tubing can be substituted.
Streptavidin   Sigma S4762 Make 1 mg/mL solution, 25 μL aliquots in PBS pH 7.3
Deoxyribonucleotide triphosphate solution mix   New England Biolabs N0447  
Inverted Optical Microscope with 10X Objective   Olympus Olympus IX-51  
Permament rare-earth magnet   National Imports www.rare-earth-magnets.com  
CCD Camera   QImaging Rolera-XR Fast 139  
Syringe Pump   Harvard Apparatus 11 Plus Operate in refill mode to facilitate solution changes
Fiber Illuminator   Thorlabs Inc. OSL1  

Referências

  1. Lee, J. B. DNA primase acts as a molecular brake in DNA replication. Nature. 439, 621-624 (2006).
  2. Tanner, N. A., van Oijen, A. M. Single-molecule observation of prokaryotic DNA replication. Methods Mol Biol. 521, 397-410 (2009).
  3. Sofia, S. J., Premnath, V. V., Merrill, E. W. Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption. Macromolecules. 31, 5059-5070 (1998).
  4. Tanner, N. A., Loparo, J. J., van Oijen, A. M. Visualizing single-molecule DNA replication with fluorescence microscopy. J Vis Exp. , (2009).
  5. Hamdan, S. M., Loparo, J. J., Takahashi, M., Richardson, C. C., van Oijen, A. M. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature. 457, 336-339 (2009).
  6. van Oijen, A. M. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science. 301, 1235-1238 (2003).
check_url/pt/1689?article_type=t

Play Video

Citar este artigo
Kulczyk, A. W., Tanner, N. A., Loparo, J. J., Richardson, C. C., van Oijen, A. M. Direct Observation of Enzymes Replicating DNA Using a Single-molecule DNA Stretching Assay. J. Vis. Exp. (37), e1689, doi:10.3791/1689 (2010).

View Video