Summary

蓝莓虫害诱导挥发物和植物内信令

Published: December 18, 2011
doi:

Summary

一个推拉式的方法收集的植物挥发是描述。该方法允许草食动物喂食,外源茉莉酸甲酯和机械损伤诱导挥发物的比较。这种技术也被用于调查从蓝莓植物内的虫害损坏分行接触到挥发物的挥发反应完好的分支机构。

Abstract

虫害诱导植物挥发物(HIPVs)通常发出的从植物,草食动物攻击 1,2 。这些HIPVs都主要受防守的植物激素茉莉酸(JA)和其挥发衍生茉莉酸甲酯(茉莉酸甲酯)3,4,5 。在过去的三十年中,研究人员已经证明,HIPVs可以排斥或吸引食草动物,吸引食草动物的天敌,在某些情况下,他们可诱发或草食动物攻击前总理植物防御。在最近的一篇论文6,我报,饲喂舞毒蛾的毛虫,外源茉莉酸甲酯的应用,以及机械损伤,诱发蓝莓植物挥发物的排放量,尽管不同的。此外,蓝莓分行从同一工厂邻近分行排放的增加JA和抗食草动物(即直接植物的防御)水平HIPVs,吸挥发性排放(​​即间接植物防御)。类似的发现ings报道,近日已对杨树山艾树7,8,和利马豆9 ..

在这里,我描述了一个推拉式的方法,收集舞毒蛾(草食动物)喂养,外源茉莉酸甲酯的应用,和机械损伤引起的蓝莓挥发物。挥发的收集装置由一个4升的挥发性收集室,2件断头台,净化进气空气输送系统,真空系统连接到一个充满陷阱与超级Q值吸附剂收集挥发物5,6,10 。在超级- Q陷阱收集的挥发物用二氯甲烷洗脱,然后用气相色谱(GC)分离和量化。这个动荡的收集方法是使用ñ我的研究调查内蓝莓植物虫害损坏分行完好的分支机构接触到挥发物的挥发反应。这里将介绍这些方法。简言之,完好的蓝莓分行暴露HIPVs来回邻近的分行在同一个工厂的米。使用上述相同的方法,从暴露后,以HIPVs分行排放的挥发性物质的收集和分析。

Protocol

1。本地诱导挥发物:草食性损伤二级分行的蓝莓植物袋装与涤纶套。 六舞毒蛾的毛虫(2日-3 路龄)放在内袋,并允许挥发收集前2天的植物饲料。对照植株没有收到任何的毛毛虫。 挥发性排放收集3天(图1)如下所述(协议#7)。聚酯袖子留在植物上,以防止昆虫逃跑。 2。本地诱导挥发物:机械损伤…

Discussion

这里描述的推挽挥发收集仪器代表了植物挥发物的顶空集合的标准方法。该仪器是用来确定由吉普赛蛾的草食动物蓝莓叶挥发响应,也让我HIPVs在工厂内信号的作用提供新的证据。

本文结果表明,卡特彼勒喂养,外生的应用茉莉酸甲酯,机械伤人增加损害的部位虽然不同,但挥发性排放。这些结果表明,JA途径中起着关键作用,在诱导蓝莓HIPVs。

HIPV暴露?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢罗伯特Holdcraft技术援助。这项研究是由美国农业部CSREES特别津贴(2009-34155-19957)和孵化基金(NJ08192)部分。

Materials

Name of the reagent Company Catalogue number Comments
Volatile collection chambers Analytical Research Systems, Inc. VCC-G6X12DT-1P Gainesville, FL
Air compressor, 20 gal, oil free, 2 hp Westward 3JR71 Sold by Grainger, Inc.
Air delivery system Analytical Research Systems, Inc. VCS-ADS-4AFM4C Gainesville, FL
Air collection system Analytical Research Systems, Inc. VCS-MVCS-4CX1P Gainesville, FL
Vacuum pump 100-150V, ¼ hp Gast Manufacturing, Inc. 4F740 Sold by Grainger, Inc.
Methyl jasmonate Sigma-Aldrich J2500 St. Louis, MO
Tween-20 Sigma-Aldrich 93773 St. Louis, MO
Rhodamine-B Sigma-Aldrich   St. Louis, MO
Plastic spray bottles, 2 oz Setco Inc.   Cranbury, NJ
Spun polyester sleeves Rockingham Opportunities Corp.   Reidsville, NC
Super-Q volatile collection traps Analytical Research Systems, Inc. VCT-1/4X3-SPQ Gainesville, FL
Scion Image Software Scion Corporation   Frederick, MD
Dichloromethane Sigma-Aldrich 270997  St. Louis, MO
Gas chromatograph HP 6890 Hewlett Packard    
Gas chromatograph Varian 3400 Varian    
n-octane Sigma-Aldrich 296988 St. Louis, MO
Mass spectrometer MAT 8230 Finnigan   San Jose, CA
HP-1 GC column Agilent Technologies   Palo Alto,
CA
MDN-5S GC column Supelco, Inc.   Bellefonte, PA

Referências

  1. Dicke, M., Van Loon, J. J. A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97, 237-237 (2000).
  2. Mumm, R., Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628-628 (2010).
  3. Hopke, J. Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352, 146-146 (1994).
  4. Rodriguez-Saona, C. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology. 16, 75-75 (2006).
  5. Rodriguez-Saona, C. Herbivore induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J. Chem. Ecol. 35, 163-163 (2009).
  6. Karban, R. Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology. 87, 922-922 (2006).
  7. Frost, C. J. Within-plant signalling by volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 10, 490-490 (2007).
  8. Heil, M., Bueno Silva, J. C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. U.S.A. 104, 5467-5467 (2007).
  9. Turlings, T. C. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science. 250, 1251-1251 (1990).
  10. Makovic, I. Volatiles involved in the nonhost rejection of Fraxinus pennsylvanica by Lymantria dispar larvae. J. Agric. Food Chem. 44, 929-929 (1996).
check_url/pt/3440?article_type=t

Play Video

Citar este artigo
Rodriguez-Saona, C. R. Herbivore-induced Blueberry Volatiles and Intra-plant Signaling. J. Vis. Exp. (58), e3440, doi:10.3791/3440 (2011).

View Video