Summary

Retrograd perfusion og påfyldning af Mouse koronar kar som forberedelse til Micro Computed Tomography Imaging

Published: February 10, 2012
doi:

Summary

Visualisering af koronarkar er afgørende for at fremme vores forståelse af hjerte-kar-sygdomme. Her beskriver vi en metode til perfusion murine koronar kar med en røntgenfast silikonegummi (Microfil), som forberedelse til mikro-Computed Tomography (μCT) billeddannelse.

Abstract

Visualisering af vaskulaturen bliver stadig vigtigere for forståelsen af ​​mange forskellige sygdomstilstande. Mens flere teknikker eksisterer for billedbehandling kar, få er i stand til at visualisere det vaskulære netværk som en helhed og samtidig udvide til en resolution, der omfatter mindre skibe 1,2. Desuden er mange vaskulære støbeteknikker ødelægge det omgivende væv, hvilket forhindrer yderligere analyse af prøven 3-5. En metode, der omgås disse spørgsmål, er mikro-Computed Tomography (μCT). μCT billeddannelse kan scanne i opløsninger <10 um, er i stand til at producere 3D rekonstruktion af det vaskulære netværk, og efterlader vævet intakt til efterfølgende analyse (f.eks histologi og morfometri) 6-11. Men, billedbehandling fartøjer ved ex vivo μCT metoder kræver, at fartøjer fyldt med en røntgenfast stof. Som sådan er den nøjagtige gengivelse af vaskulaturen fremstilles ved μCT billeddannelse betingetpålidelige og fuldstændige fyldning af skibene. I denne protokol, beskriver vi en teknik til at fylde mus koronarkar i forberedelse til μCT billeddannelse.

To dominerer teknikker eksisterer til fyldning af koronar vaskulaturen: in vivo via en kanyle og retrograd perfusion af aorta (eller en gren af aortabuen) 12-14 eller ex vivo via en Langendorff perfusionssystem 15-17. Her beskriver vi pt de vivo aorta kanylering metode, der er specielt designet til at sikre fyldning af alle fartøjer. Vi anvender en lav viskositet røntgenabsorberende stof kaldet Microfil som kan perfundere gennem mindste fartøjer for at fylde hele kapillærer, såvel som både arterielle og venøse side af det vaskulære netværk. Skibe perfunderet med buffer med en tryksat perfusionssystem, og derefter fyldt med Microfil. At sikre, at Microfil fylder mindre højere modstand fartøjer vi ligere de store grene emanating fra aorta, som afleder Microfil ind i blodpropper. Når påfyldning er fuldført, for at forhindre den elastiske beskaffenhed af hjertevæv fra presse Microfil af nogle kar, vi ligere tilgængelige store vaskulære udgangssteder umiddelbart efter fyldning. Derfor er vores teknik optimeret til fuldstændig fyldning og maksimal retention af fyldstof, muliggør visualisering af hele koronar vaskulære netværk – arterier, kapillærer og vener ens.

Protocol

1. Forberedelser før start Fylde hver side af trykket perfusion apparatet med vasodilator puffer (4mg / l Papaverin + 1 g / L Adenosin i PBS) eller 4% paraformaldehyd (PFA) i PBS, hhv. Forbered en 1/2cc insulinsprøjte (med fastmonteret 29g ½ "nål) ved at fylde den med 0,1 ml 1:100 Heparin (5000U/ml lager) og bøje nålen til ~ 120 graders vinkel med facet op. Gør samme med en 1 ml sprøjte (med en 26G ½ "nål) fyldt med 0,3 ml mættet KCI-opløsning. …

Discussion

Hjertevæv har en meget høj metabolisk behov, og derfor kræver en konstant tilførsel af næringsstoffer og oxygen fra blodet leveret af koronar vaskulatur. Sygdomme i koronarkar, som aftager koronar funktion på grund af skibet stenose og blokering, kan føre til hypoxi og iskæmi, og sætte de berørte patienter med risiko for myokardieinfarkt og uoprettelig skade på hjertemusklen. En bedre forståelse af den syge tilstand af disse fartøjer er nødvendig, og afgørende for vores evne til at studere koronarkar er v…

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi takker Dr. Kelly Stevens til indledende forsøg i protokollen, Dr. Michael Simons, Dr. Kip Hauch, og medlemmer af begge deres laboratorier til generel diskussion.

Dette arbejde er støtte fra NIH tilskud HL087513 og P01 HL094374.

Materials

Name of the reagent Company Catalogue number Comments
1 ml syringes Becton Dickinson BD-309602  
1/2cc insulin syringes with permanently attached 29G ½’ needles Becton Dickinson BD-309306  
2″ x 2″ Gauze pads Med101store.com SKU 2208  
24G ¾” Angiocath IV catheter Becton Dickinson BD-381112  
26G ½”gauge needles Becton Dickinson BD-305111  
Adenosine Sigma A9251 1g/L in PBS for Vasodilation Buffer (with Papaverine)
Angled Graefe Forceps Fine Science Tools 11052-10  
Cotton-tipped applicators: 6″ non-sterile Cardinal Health C15055-006  
Curved Surgical Scissors Fine Science Tools 14085-09  
Dissecting stereoscope and light source Nikon NA NA
Dissecting Tray, 11.5 x 7.5 inches Cole-Parmer YO-10915-12 Filled with tar for pinning down the mouse
Fine Curved Forceps Aesculap FD281R Need two
Heparin, 5000 U/ml stock APP Pharmaceuticals LLC NDC 63323-047-10 1:100 dilution in water
KCl Fisher P217 Saturated solution in H2O
Ketamin  (Ketaset), 100 mg/ml stock Fort Dodge, Overland Park, KS, USA NDC 0856-2013-01 Mixed as 130 mg/kg body weight, with Xylazine in 0.9% saline
Microfil Flow Tech MV-122 (yellow). Other color options are also available. Mix 1:1 by weight, with 10% by volume of curing agent. Prepare just before injection, and vortex to ensure it is well mixed
Non-sterile Suture: 6-0, braided silk Harvard Apparatus 723287  
Papaverine American Regent Inc. NDC 0517-4010-01 4mg/L in PBS for Vasodilation Buffer (with Adenosine)
Paraformaldehyde Sigma P6148 Prepared as 4% solution
Perfusion Apparatus     See figure 2
Spring Scissors Fine Science Tools 15018-10  
Xylazine (Anased), 20 mg/gl stock Lloyd Labs NADA #139-236 Mixed as 8.8 mg/kg body weight, with Ketamin in 0.9% saline

Referências

  1. Couffinhal, T., Dufourcq, P., Barandon, L., Leroux, L., Duplaa, C. Mouse models to study angiogenesis in the context of cardiovascular diseases. Front. Biosci. 14, 3310-3325 (2009).
  2. Zagorchev, L., Mulligan-Kehoe, M. J. Molecular imaging of vessels in mouse models of disease. Eur. J. Radiol. 70, 305-311 (2009).
  3. Krucker, T., Lang, A., Meyer, E. P. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc. Res. Tech. 69, 138-147 (2006).
  4. Murakami, T. Blood flow patterns in the rat pancreas: a simulative demonstration by injection replication and scanning electron microscopy. Microsc. Res. Tech. 37, 497-508 (1997).
  5. Icardo, J. M., Colvee, E. Origin and course of the coronary arteries in normal mice and in iv/iv mice. J. Anat. 199, 473-482 (2001).
  6. Beighley, P. E., Thomas, P. J., Jorgensen, S. M., Ritman, E. L. 3D architecture of myocardial microcirculation in intact rat heart: a study with micro-CT. Adv. Exp. Med. Biol. 430, 165-175 (1997).
  7. Bentley, M. D., Ortiz, M. C., Ritman, E. L., Romero, J. C. The use of microcomputed tomography to study microvasculature in small rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1267-R1279 (2002).
  8. Jorgensen, S. M., Demirkaya, O., Ritman, E. L. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am. J. Physiol. 275, H1103-H1114 (1998).
  9. Marxen, M. MicroCT scanner performance and considerations for vascular specimen imaging. Med. Phys. 31, 305-313 (2004).
  10. Zagorchev, L. Micro computed tomography for vascular exploration. J. Angiogenes. Res. 2, 7-7 (2010).
  11. Heinzer, S. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage. 32, 626-636 (2006).
  12. Dedkov, E. I. Synectin/syndecan-4 regulate coronary arteriolar growth during development. Dev. Dyn. 236, 2004-2010 (2007).
  13. Gossl, M. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 272, 526-537 (2003).
  14. Rodriguez-Porcel, M. Altered myocardial microvascular 3D architecture in experimental hypercholesterolemia. Circulation. 102, 2028-2030 (2000).
  15. Bell, R. M., Mocanu, M. M., Yellon, D. M. Retrograde heart perfusion: The Langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 50, 940-950 (2011).
  16. Skrzypiec-Spring, M., Grotthus, B., Szelag, A., Schulz, R. Isolated heart perfusion according to Langendorff—still viable in the new millennium. J. Pharmacol. Toxicol. Methods. 55, 113-126 (2007).
  17. Toyota, E. Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation. 112, 2108-2113 (2005).
  18. Lavine, K. J., Long, F., Choi, K., Smith, C., Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development. 135, 3161-3171 (2008).
  19. Cheema, A. N. Adventitial microvessel formation after coronary stenting and the effects of SU11218, a tyrosine kinase inhibitor. J. Am. Coll. Cardiol. 47, 1067-1075 (2006).
  20. Lametschwandtner, A., Lametschwandtner, U., Weiger, T. Scanning electron microscopy of vascular corrosion casts–technique and applications: updated review. Scanning Microsc. 4, 889-941 (1990).
  21. Schneider, P. Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc. Res. Tech. 72, 690-701 (2009).
  22. Manelli, A., Sangiorgi, S., Binaghi, E., Raspanti, M. 3D analysis of SEM images of corrosion casting using adaptive stereo matching. Microscopy Research and Technique. 70, 350-354 (2007).
  23. Alanentalo, T. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat. Meth. 4, 31-33 (2007).
  24. Quintana, L., Sharpe, J. . Optical projection tomography of vertebrate embryo development. , 586-594 (2011).
  25. Walls, J. R., Coultas, L., Rossant, J., Henkelman, R. M. Three-Dimensional Analysis of Vascular Development in the Mouse Embryo. PLoS ONE. 3, e2853-e2853 (2008).
  26. Chalothorn, D., Clayton, J. A., Zhang, H., Pomp, D., Faber, J. E. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol. Genomics. 30, 179-191 (2007).
  27. Behm, C. Z. Molecular Imaging of Endothelial Vascular Cell Adhesion Molecule-1 Expression and Inflammatory Cell Recruitment During Vasculogenesis and Ischemia-Mediated Arteriogenesis. Circulation. 117, 2902-2911 (2008).
  28. Carr, C. L., Lindner, J. R. Myocardial perfusion imaging with contrast echocardiography. Curr. Cardiol. Rep. 10, 233-239 (2008).
  29. Leong-Poi, H. Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression. Circulation. 111, 3248-3254 (2005).
  30. Villanueva, F. S. Microbubbles Targeted to Intercellular Adhesion Molecule-1 Bind to Activated Coronary Artery Endothelial Cells. Circulation. 98, 1-5 (1998).
  31. Wei, K. Quantification of Myocardial Blood Flow With Ultrasound-Induced Destruction of Microbubbles Administered as a Constant Venous Infusion. Circulation. 97, 473-483 (1998).
  32. Beckmann, N., Stirnimann, R., Bochelen, D. High-Resolution Magnetic Resonance Angiography of the Mouse Brain: Application to Murine Focal Cerebral Ischemia Models. Journal of Magnetic Resonance. 140, 442-450 (1999).
  33. Kobayashi, H. 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magnetic Resonance in Medicine. 46, 579-585 (2001).
  34. Nezafat, R. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn. Reson. Med. 55, 858-864 (2006).
  35. Wagner, S., Helisch, A., Ziegelhoeffer, T., Bachmann, G., Schaper, W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR in Biomedicine. 17, 21-27 (2004).
  36. Cochet, H. In vivo MR angiography and velocity measurement in mice coronary arteries at 9.4 T: assessment of coronary flow velocity reserve. Radiology. , 254-441 (2010).
check_url/pt/3740?article_type=t

Play Video

Citar este artigo
Weyers, J. J., Carlson, D. D., Murry, C. E., Schwartz, S. M., Mahoney, Jr., W. M. Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging. J. Vis. Exp. (60), e3740, doi:10.3791/3740 (2012).

View Video