Summary

Perfusión retrógrada y llenado de la vasculatura coronaria del ratón, como preparación para la Micro tomografía computarizada

Published: February 10, 2012
doi:

Summary

La visualización de los vasos coronarios es fundamental para avanzar en nuestra comprensión de las enfermedades cardiovasculares. Aquí se describe un método para la perfusión vascular coronaria murino con una goma de silicona radiopaco (Microfil), en preparación para la micro-tomografía axial computerizada (μCT) de imágenes.

Abstract

La visualización de la vasculatura se está convirtiendo cada vez más importante para la comprensión de muchos estados patológicos diferentes. Si bien existen varias técnicas para obtener imágenes de la vasculatura, pocos son capaces de visualizar la red vascular en su conjunto, mientras que se extiende a una resolución que incluye el 1,2 vasos más pequeños. Además, muchas de las técnicas de colada vasculares destruir el tejido circundante, evitando su posterior análisis de la muestra 3-5. Un método que evita estos problemas es de micro-tomografía axial computerizada (μCT). μCT imagen puede escanear a resoluciones menores de 10 micras, es capaz de producir reconstrucciones en 3D de la red vascular, y deja el tejido intacto para su posterior análisis (por ejemplo, histología y morfometría) 11.06. Sin embargo, los vasos de imágenes ex vivo por métodos μCT requiere que los vasos se llena con un compuesto radiopaco. Como tal, la representación exacta de la vasculatura producido por μCT imagen dependellenado fiable y completa de los vasos. En este protocolo, se describe una técnica para el llenado de los vasos coronarios del ratón en la preparación de imágenes μCT.

Dos técnicas que predominan existen para el llenado de los vasos coronarios: en vivo a través de la perfusión de la canalización y retrógrado de la aorta (o una rama del arco aórtico) 12-14, o ex vivo a través de un sistema de perfusión Langendorff 15-17. A continuación se describe un método in vivo canulación aórtica, que ha sido específicamente diseñado para garantizar el llenado de todos los buques. Nosotros utilizamos un compuesto viscosidad baja radiopaco llamado Microfil que puede perfundir a través de los vasos más pequeños para llenar todos los capilares, así como los dos lados arteriales y venosas de la red vascular. Los buques son perfundidos con buffer usando un sistema de perfusión a presión, y se rellena con Microfil. Para asegurarse de que Microfil llena los pequeños vasos de resistencia más altos, que ligan las ramas grandes emanating de la aorta, que desvía el Microfil en las coronarias. Una vez finalizado el llenado, para evitar que la naturaleza elástica del tejido cardíaco de exprimir Microfil cabo de algunos vasos, que ligar accesibles los puntos importantes de salida vasculares inmediatamente después del llenado. Por lo tanto, nuestra técnica está optimizado para el llenado completo y la retención máxima del agente de carga, lo que permite la visualización completa de la red vascular coronaria – arterias, capilares y venas por igual.

Protocol

1. Los preparativos antes de iniciar Llenar cada lado del aparato de presión de perfusión con tampón Vasodilatador (4 mg / l papaverina + 1g / l adenosina en PBS) o 4% de paraformaldehído (PFA) en PBS, respectivamente. Preparar una jeringa de insulina 1/2cc (con un 29G conectado permanentemente ½ "aguja) llenándolo con 0,1 ml de heparina 1:100 (stock 5000U/ml) y doblar la aguja a un ángulo de 120 grados ~ con el bisel hacia arriba. Haga lo misma con una jeringa de 1 ml (con un 26G ½ &qu…

Discussion

Tejido cardíaco tiene una demanda metabólica muy alta, y por tanto requiere un suministro constante de nutrientes y el oxígeno de la sangre entregada por la vasculatura coronaria. Las enfermedades de los vasos coronarios, los cuales disminuyen la función coronaria debido a la estenosis del vaso y el bloqueo, puede llevar a la hipoxia tisular y la isquemia, y poner a los pacientes afectados por el riesgo de infarto de miocardio y un daño irreparable al músculo del corazón. Una mejor comprensión del estado de enfe…

Declarações

The authors have nothing to disclose.

Acknowledgements

Agradecemos al Dr. Kelly Stevens para las pruebas iniciales del protocolo, el Dr. Michael Simons, Hauch Dr. Kip, y los miembros de sus dos laboratorios para la discusión general.

Este trabajo es el apoyo de subvenciones del NIH HL087513 y HL094374 P01.

Materials

Name of the reagent Company Catalogue number Comments
1 ml syringes Becton Dickinson BD-309602  
1/2cc insulin syringes with permanently attached 29G ½’ needles Becton Dickinson BD-309306  
2″ x 2″ Gauze pads Med101store.com SKU 2208  
24G ¾” Angiocath IV catheter Becton Dickinson BD-381112  
26G ½”gauge needles Becton Dickinson BD-305111  
Adenosine Sigma A9251 1g/L in PBS for Vasodilation Buffer (with Papaverine)
Angled Graefe Forceps Fine Science Tools 11052-10  
Cotton-tipped applicators: 6″ non-sterile Cardinal Health C15055-006  
Curved Surgical Scissors Fine Science Tools 14085-09  
Dissecting stereoscope and light source Nikon NA NA
Dissecting Tray, 11.5 x 7.5 inches Cole-Parmer YO-10915-12 Filled with tar for pinning down the mouse
Fine Curved Forceps Aesculap FD281R Need two
Heparin, 5000 U/ml stock APP Pharmaceuticals LLC NDC 63323-047-10 1:100 dilution in water
KCl Fisher P217 Saturated solution in H2O
Ketamin  (Ketaset), 100 mg/ml stock Fort Dodge, Overland Park, KS, USA NDC 0856-2013-01 Mixed as 130 mg/kg body weight, with Xylazine in 0.9% saline
Microfil Flow Tech MV-122 (yellow). Other color options are also available. Mix 1:1 by weight, with 10% by volume of curing agent. Prepare just before injection, and vortex to ensure it is well mixed
Non-sterile Suture: 6-0, braided silk Harvard Apparatus 723287  
Papaverine American Regent Inc. NDC 0517-4010-01 4mg/L in PBS for Vasodilation Buffer (with Adenosine)
Paraformaldehyde Sigma P6148 Prepared as 4% solution
Perfusion Apparatus     See figure 2
Spring Scissors Fine Science Tools 15018-10  
Xylazine (Anased), 20 mg/gl stock Lloyd Labs NADA #139-236 Mixed as 8.8 mg/kg body weight, with Ketamin in 0.9% saline

Referências

  1. Couffinhal, T., Dufourcq, P., Barandon, L., Leroux, L., Duplaa, C. Mouse models to study angiogenesis in the context of cardiovascular diseases. Front. Biosci. 14, 3310-3325 (2009).
  2. Zagorchev, L., Mulligan-Kehoe, M. J. Molecular imaging of vessels in mouse models of disease. Eur. J. Radiol. 70, 305-311 (2009).
  3. Krucker, T., Lang, A., Meyer, E. P. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc. Res. Tech. 69, 138-147 (2006).
  4. Murakami, T. Blood flow patterns in the rat pancreas: a simulative demonstration by injection replication and scanning electron microscopy. Microsc. Res. Tech. 37, 497-508 (1997).
  5. Icardo, J. M., Colvee, E. Origin and course of the coronary arteries in normal mice and in iv/iv mice. J. Anat. 199, 473-482 (2001).
  6. Beighley, P. E., Thomas, P. J., Jorgensen, S. M., Ritman, E. L. 3D architecture of myocardial microcirculation in intact rat heart: a study with micro-CT. Adv. Exp. Med. Biol. 430, 165-175 (1997).
  7. Bentley, M. D., Ortiz, M. C., Ritman, E. L., Romero, J. C. The use of microcomputed tomography to study microvasculature in small rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1267-R1279 (2002).
  8. Jorgensen, S. M., Demirkaya, O., Ritman, E. L. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am. J. Physiol. 275, H1103-H1114 (1998).
  9. Marxen, M. MicroCT scanner performance and considerations for vascular specimen imaging. Med. Phys. 31, 305-313 (2004).
  10. Zagorchev, L. Micro computed tomography for vascular exploration. J. Angiogenes. Res. 2, 7-7 (2010).
  11. Heinzer, S. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage. 32, 626-636 (2006).
  12. Dedkov, E. I. Synectin/syndecan-4 regulate coronary arteriolar growth during development. Dev. Dyn. 236, 2004-2010 (2007).
  13. Gossl, M. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 272, 526-537 (2003).
  14. Rodriguez-Porcel, M. Altered myocardial microvascular 3D architecture in experimental hypercholesterolemia. Circulation. 102, 2028-2030 (2000).
  15. Bell, R. M., Mocanu, M. M., Yellon, D. M. Retrograde heart perfusion: The Langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 50, 940-950 (2011).
  16. Skrzypiec-Spring, M., Grotthus, B., Szelag, A., Schulz, R. Isolated heart perfusion according to Langendorff—still viable in the new millennium. J. Pharmacol. Toxicol. Methods. 55, 113-126 (2007).
  17. Toyota, E. Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation. 112, 2108-2113 (2005).
  18. Lavine, K. J., Long, F., Choi, K., Smith, C., Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development. 135, 3161-3171 (2008).
  19. Cheema, A. N. Adventitial microvessel formation after coronary stenting and the effects of SU11218, a tyrosine kinase inhibitor. J. Am. Coll. Cardiol. 47, 1067-1075 (2006).
  20. Lametschwandtner, A., Lametschwandtner, U., Weiger, T. Scanning electron microscopy of vascular corrosion casts–technique and applications: updated review. Scanning Microsc. 4, 889-941 (1990).
  21. Schneider, P. Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc. Res. Tech. 72, 690-701 (2009).
  22. Manelli, A., Sangiorgi, S., Binaghi, E., Raspanti, M. 3D analysis of SEM images of corrosion casting using adaptive stereo matching. Microscopy Research and Technique. 70, 350-354 (2007).
  23. Alanentalo, T. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat. Meth. 4, 31-33 (2007).
  24. Quintana, L., Sharpe, J. . Optical projection tomography of vertebrate embryo development. , 586-594 (2011).
  25. Walls, J. R., Coultas, L., Rossant, J., Henkelman, R. M. Three-Dimensional Analysis of Vascular Development in the Mouse Embryo. PLoS ONE. 3, e2853-e2853 (2008).
  26. Chalothorn, D., Clayton, J. A., Zhang, H., Pomp, D., Faber, J. E. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol. Genomics. 30, 179-191 (2007).
  27. Behm, C. Z. Molecular Imaging of Endothelial Vascular Cell Adhesion Molecule-1 Expression and Inflammatory Cell Recruitment During Vasculogenesis and Ischemia-Mediated Arteriogenesis. Circulation. 117, 2902-2911 (2008).
  28. Carr, C. L., Lindner, J. R. Myocardial perfusion imaging with contrast echocardiography. Curr. Cardiol. Rep. 10, 233-239 (2008).
  29. Leong-Poi, H. Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression. Circulation. 111, 3248-3254 (2005).
  30. Villanueva, F. S. Microbubbles Targeted to Intercellular Adhesion Molecule-1 Bind to Activated Coronary Artery Endothelial Cells. Circulation. 98, 1-5 (1998).
  31. Wei, K. Quantification of Myocardial Blood Flow With Ultrasound-Induced Destruction of Microbubbles Administered as a Constant Venous Infusion. Circulation. 97, 473-483 (1998).
  32. Beckmann, N., Stirnimann, R., Bochelen, D. High-Resolution Magnetic Resonance Angiography of the Mouse Brain: Application to Murine Focal Cerebral Ischemia Models. Journal of Magnetic Resonance. 140, 442-450 (1999).
  33. Kobayashi, H. 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magnetic Resonance in Medicine. 46, 579-585 (2001).
  34. Nezafat, R. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn. Reson. Med. 55, 858-864 (2006).
  35. Wagner, S., Helisch, A., Ziegelhoeffer, T., Bachmann, G., Schaper, W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR in Biomedicine. 17, 21-27 (2004).
  36. Cochet, H. In vivo MR angiography and velocity measurement in mice coronary arteries at 9.4 T: assessment of coronary flow velocity reserve. Radiology. , 254-441 (2010).
check_url/pt/3740?article_type=t

Play Video

Citar este artigo
Weyers, J. J., Carlson, D. D., Murry, C. E., Schwartz, S. M., Mahoney, Jr., W. M. Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging. J. Vis. Exp. (60), e3740, doi:10.3791/3740 (2012).

View Video