Summary

마이크로 계산된 Tomography 이미징을위한 준비로서 역행 관류 및 마우스 관상 Vasculature의 작성

Published: February 10, 2012
doi:

Summary

관상 혈관의 시각화는 심장 혈관 질병의 우리의 이해를 증진하기 위해 중요합니다. 여기에서 우리는 마이크로 계산된 Tomography (μCT) 이미징을위한 준비, radiopaque 실리콘 고무 (Microfil)로 murine 관상 vasculature을 perfusing위한 방법을 설명합니다.

Abstract

vasculature의 시각화는 여러 질병 상태를 이해를 위해 점점 더 중요 해지고 있습니다. 여러 기법 이미징 vasculature을 위해 존재하지만, 몇몇 작은 혈관의 1,2를 포함 해상도로 확대하면서 전체적으로 혈관 네트워크를 시각화 할 수 있습니다. 또한 많은 혈관 주조 기법 예제 3-5의 자세한 분석을 방지, 주변 조직을 파괴. 이러한 문제를 circumvents 한 가지 방법은 마이크로 계산된 Tomography (μCT)입니다. μCT 영상은 해상도 <10 미크론에서 스캔 혈관 네트워크의 3 차원 reconstructions를 생산 할 수 있으며 (예 : 조직학 및 morphometry) 후속 분석을 위해 그대로 6-11을 조직을 떠날 수 있습니다. 그러나 전직 생체내 μCT 방법에 의한 이미징 혈관 혈관이 radiopaque 화합물로 가득해야합니다. 따라서 μCT 이미징 제작한 vasculature의 정확한 표현이 조건으로하고있다혈관의 신뢰성과 완벽한 충전. 이 프로토콜에서는 μCT 이미징을위한 준비 마우스 관상 동맥 혈관을 작성을위한 기법을 설명합니다.

두 predominate 기술은 관상 vasculature 가득 채우는 것은 존재 : Langendorff 재관류 시스템을 통해 15-17 cannulation과 역행 대동맥의 관류 (또는 대동맥 아치 해제 지점) 12-14, 또는 전직 생체내 통해 생체내 인치 여기에서 우리는 특별히 모든 선박에 대해 작성하도록 설계되었습니다 생체내의 대동맥 cannulation 방법에 대해 설명합니다. 우리 모두는 모세 혈관뿐만 아니라, 혈관 네트워크의 동맥과 정맥의 양쪽 모두를 채우기 위해 작은 혈관을 통해 perfuse 수 Microfil라는 낮은 점도의 radiopaque 화합물을 사용합니다. 혈관이 압력 관류 시스템을 사용하여 버퍼로 perfused 후 Microfil으로 가득합니다. 그 Microfil가 작은 높은 저항 혈관을 채우고 확보하기 위해 대규모 지점 emanatin ligatecoronaries로 Microfil을 산란 대동맥에서 g. 일단 충전 일부 표본 Microfil을 짜면 심장 조직의 탄성 특성을 방지하기 위해, 완료 즉시 충전 후 접근이 주요 혈관 출구 포인트를 ligate. 따라서, 우리의 기술은 완전한 관상 혈관 네트워크의 시각화을 사용, 충전 대리인의 완전한 충전과 최대 보존에 최적화되어 있습니다 – 동맥, 모세 혈관과 정맥이 비슷하다.

Protocol

1. 시작하기 전에 준비 각각 PBS에서 Vasodilator 버퍼 (4mg / L Papaverine + 1g / L은 PBS에 아데노신) 또는 4 % Paraformaldehyde (PFA)로 압력 재관류 장치의 각 측면을 채웁니다. 1:100 헤파린의 0.1 ML (5000U/ml 주식)로 작성하고 최대 베벨과 함께 ~ 120도 각도로 바늘을 벤딩하여 1/2cc 인슐린 주사기를 (영구적으로 연결된 29G ½ "바늘로) 준비합니다. 수행 0.3 ML 포화 KCl 용액으로 가득 한 ML의 주사기 (26G …

Discussion

심장 조직은 매우 높은 신진 대사 수요를 가지고 있으며, 따라서 관상 vasculature에 의해 전달되는 혈액의 영양분과 산소의 지속적인 공급이 필요합니다. 선박 협착과 막힘으로 인해 관상 동맥 기능을 감소 관상 혈관, 환자는 조직 hypoxia와 국소 빈혈을 초래할, 그리고 심근 경색과 심장 근육에 치유할 수없는 손상에 대한 위험에 영향을받는 환자를 넣을 수 있습니다. 이러한 혈관의 질병 상태에 대한…

Declarações

The authors have nothing to disclose.

Acknowledgements

우리는 프로토콜 박사 마이클 Simon 씨의, 닥터 킵의 Hauch, 그리고 일반적인 토론을위한 그들의 실험실의 두 구성원들의 초기 실험 용 박사 켈리 스티븐스 감사드립니다.

이 작품은 NIH 보조금 HL087513 및 P01 HL094374에 의해 지원입니다.

Materials

Name of the reagent Company Catalogue number Comments
1 ml syringes Becton Dickinson BD-309602  
1/2cc insulin syringes with permanently attached 29G ½’ needles Becton Dickinson BD-309306  
2″ x 2″ Gauze pads Med101store.com SKU 2208  
24G ¾” Angiocath IV catheter Becton Dickinson BD-381112  
26G ½”gauge needles Becton Dickinson BD-305111  
Adenosine Sigma A9251 1g/L in PBS for Vasodilation Buffer (with Papaverine)
Angled Graefe Forceps Fine Science Tools 11052-10  
Cotton-tipped applicators: 6″ non-sterile Cardinal Health C15055-006  
Curved Surgical Scissors Fine Science Tools 14085-09  
Dissecting stereoscope and light source Nikon NA NA
Dissecting Tray, 11.5 x 7.5 inches Cole-Parmer YO-10915-12 Filled with tar for pinning down the mouse
Fine Curved Forceps Aesculap FD281R Need two
Heparin, 5000 U/ml stock APP Pharmaceuticals LLC NDC 63323-047-10 1:100 dilution in water
KCl Fisher P217 Saturated solution in H2O
Ketamin  (Ketaset), 100 mg/ml stock Fort Dodge, Overland Park, KS, USA NDC 0856-2013-01 Mixed as 130 mg/kg body weight, with Xylazine in 0.9% saline
Microfil Flow Tech MV-122 (yellow). Other color options are also available. Mix 1:1 by weight, with 10% by volume of curing agent. Prepare just before injection, and vortex to ensure it is well mixed
Non-sterile Suture: 6-0, braided silk Harvard Apparatus 723287  
Papaverine American Regent Inc. NDC 0517-4010-01 4mg/L in PBS for Vasodilation Buffer (with Adenosine)
Paraformaldehyde Sigma P6148 Prepared as 4% solution
Perfusion Apparatus     See figure 2
Spring Scissors Fine Science Tools 15018-10  
Xylazine (Anased), 20 mg/gl stock Lloyd Labs NADA #139-236 Mixed as 8.8 mg/kg body weight, with Ketamin in 0.9% saline

Referências

  1. Couffinhal, T., Dufourcq, P., Barandon, L., Leroux, L., Duplaa, C. Mouse models to study angiogenesis in the context of cardiovascular diseases. Front. Biosci. 14, 3310-3325 (2009).
  2. Zagorchev, L., Mulligan-Kehoe, M. J. Molecular imaging of vessels in mouse models of disease. Eur. J. Radiol. 70, 305-311 (2009).
  3. Krucker, T., Lang, A., Meyer, E. P. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc. Res. Tech. 69, 138-147 (2006).
  4. Murakami, T. Blood flow patterns in the rat pancreas: a simulative demonstration by injection replication and scanning electron microscopy. Microsc. Res. Tech. 37, 497-508 (1997).
  5. Icardo, J. M., Colvee, E. Origin and course of the coronary arteries in normal mice and in iv/iv mice. J. Anat. 199, 473-482 (2001).
  6. Beighley, P. E., Thomas, P. J., Jorgensen, S. M., Ritman, E. L. 3D architecture of myocardial microcirculation in intact rat heart: a study with micro-CT. Adv. Exp. Med. Biol. 430, 165-175 (1997).
  7. Bentley, M. D., Ortiz, M. C., Ritman, E. L., Romero, J. C. The use of microcomputed tomography to study microvasculature in small rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1267-R1279 (2002).
  8. Jorgensen, S. M., Demirkaya, O., Ritman, E. L. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am. J. Physiol. 275, H1103-H1114 (1998).
  9. Marxen, M. MicroCT scanner performance and considerations for vascular specimen imaging. Med. Phys. 31, 305-313 (2004).
  10. Zagorchev, L. Micro computed tomography for vascular exploration. J. Angiogenes. Res. 2, 7-7 (2010).
  11. Heinzer, S. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage. 32, 626-636 (2006).
  12. Dedkov, E. I. Synectin/syndecan-4 regulate coronary arteriolar growth during development. Dev. Dyn. 236, 2004-2010 (2007).
  13. Gossl, M. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 272, 526-537 (2003).
  14. Rodriguez-Porcel, M. Altered myocardial microvascular 3D architecture in experimental hypercholesterolemia. Circulation. 102, 2028-2030 (2000).
  15. Bell, R. M., Mocanu, M. M., Yellon, D. M. Retrograde heart perfusion: The Langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 50, 940-950 (2011).
  16. Skrzypiec-Spring, M., Grotthus, B., Szelag, A., Schulz, R. Isolated heart perfusion according to Langendorff—still viable in the new millennium. J. Pharmacol. Toxicol. Methods. 55, 113-126 (2007).
  17. Toyota, E. Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation. 112, 2108-2113 (2005).
  18. Lavine, K. J., Long, F., Choi, K., Smith, C., Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development. 135, 3161-3171 (2008).
  19. Cheema, A. N. Adventitial microvessel formation after coronary stenting and the effects of SU11218, a tyrosine kinase inhibitor. J. Am. Coll. Cardiol. 47, 1067-1075 (2006).
  20. Lametschwandtner, A., Lametschwandtner, U., Weiger, T. Scanning electron microscopy of vascular corrosion casts–technique and applications: updated review. Scanning Microsc. 4, 889-941 (1990).
  21. Schneider, P. Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc. Res. Tech. 72, 690-701 (2009).
  22. Manelli, A., Sangiorgi, S., Binaghi, E., Raspanti, M. 3D analysis of SEM images of corrosion casting using adaptive stereo matching. Microscopy Research and Technique. 70, 350-354 (2007).
  23. Alanentalo, T. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat. Meth. 4, 31-33 (2007).
  24. Quintana, L., Sharpe, J. . Optical projection tomography of vertebrate embryo development. , 586-594 (2011).
  25. Walls, J. R., Coultas, L., Rossant, J., Henkelman, R. M. Three-Dimensional Analysis of Vascular Development in the Mouse Embryo. PLoS ONE. 3, e2853-e2853 (2008).
  26. Chalothorn, D., Clayton, J. A., Zhang, H., Pomp, D., Faber, J. E. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol. Genomics. 30, 179-191 (2007).
  27. Behm, C. Z. Molecular Imaging of Endothelial Vascular Cell Adhesion Molecule-1 Expression and Inflammatory Cell Recruitment During Vasculogenesis and Ischemia-Mediated Arteriogenesis. Circulation. 117, 2902-2911 (2008).
  28. Carr, C. L., Lindner, J. R. Myocardial perfusion imaging with contrast echocardiography. Curr. Cardiol. Rep. 10, 233-239 (2008).
  29. Leong-Poi, H. Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression. Circulation. 111, 3248-3254 (2005).
  30. Villanueva, F. S. Microbubbles Targeted to Intercellular Adhesion Molecule-1 Bind to Activated Coronary Artery Endothelial Cells. Circulation. 98, 1-5 (1998).
  31. Wei, K. Quantification of Myocardial Blood Flow With Ultrasound-Induced Destruction of Microbubbles Administered as a Constant Venous Infusion. Circulation. 97, 473-483 (1998).
  32. Beckmann, N., Stirnimann, R., Bochelen, D. High-Resolution Magnetic Resonance Angiography of the Mouse Brain: Application to Murine Focal Cerebral Ischemia Models. Journal of Magnetic Resonance. 140, 442-450 (1999).
  33. Kobayashi, H. 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magnetic Resonance in Medicine. 46, 579-585 (2001).
  34. Nezafat, R. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn. Reson. Med. 55, 858-864 (2006).
  35. Wagner, S., Helisch, A., Ziegelhoeffer, T., Bachmann, G., Schaper, W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR in Biomedicine. 17, 21-27 (2004).
  36. Cochet, H. In vivo MR angiography and velocity measurement in mice coronary arteries at 9.4 T: assessment of coronary flow velocity reserve. Radiology. , 254-441 (2010).

Play Video

Citar este artigo
Weyers, J. J., Carlson, D. D., Murry, C. E., Schwartz, S. M., Mahoney, Jr., W. M. Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging. J. Vis. Exp. (60), e3740, doi:10.3791/3740 (2012).

View Video