Summary

原发性生肌前体细胞/成肌细胞从基底哺乳动物支系文化准备

Published: April 30, 2014
doi:

Summary

在体外培养系统已被证明不可缺少的,以我们的脊椎动物肌肉发育的理解。然而,还有许多尚待了解非哺乳动物骨骼肌肉的发育和成长,尤其是在基础类群。一个高效,健壮的协议用于分离该组织中,肌细胞前体细胞(MPC)中的成体干细胞,并维持它们的自我更新,增殖,并在原代培养物分化的设置允许的保守和发散调节机制的识别整个脊椎动物的谱系。

Abstract

由于固有的困难,并参与研究体内生肌程序时,从骨骼肌的居民的成体干细胞来源的原代培养系统,生肌前体细胞(MPC)中,已证明不可或缺到我们的哺乳动物骨骼肌发育的理解和增长。特别是脊椎动物的基部类群但是数据是有限的,描述控制的自我更新,增殖和MPC的分化的分子机制。特别令人感兴趣的是背后基底脊椎动物经受相当大的后期幼骨骼肌肌纤维增生( 硬骨鱼)和全再生的附属物损失( urodele两栖动物)的能力的潜在机制。此外,使用培养的成肌细胞可能有助于再生和生肌程序的总结和它们之间的差异的理解。至为此,我们详细描述了一个强大和高效的协议(和其中的变化),用于隔离和维护的MPC和他们的后代,成肌细胞和未成熟的肌管,在细胞培养作为理解生肌计划的发展平台,与更多的开始基底脊椎动物。凭借斑马鱼( 斑马鱼 )的模式生物的状态,我们报告这个协议的鲤科鱼类分支亚科的小鱼应用。在串联,这个协议可以被用来从墨西哥蝾螈(Ambystomamexicanum),甚至啮齿类实验动物隔离多用途储值卡,以实现更广泛的比较方法。该协议是目前广泛使用的几种鱼类物种,包括虹鳟,鲑鱼和鲷鱼1-4学习肌肉发育。

Introduction

哺乳动物肌肉发生的相当的了解已经通过这个过程的概括在这两个初级小鼠( 小家鼠 )的成肌细胞培养物和良好描述的小鼠衍生的细胞系中获得,C2C12 5。在20世纪50年代6起,这些文化都引发了很多进步的murinemyogenic程序的理解,并推而广之,肌肉发生在其他脊椎动物。此外,单细胞的肌纤维植技术已增加了相互作用的了解卫星细胞和周围的肌纤维7-9之间。细胞培养物对肌肉发育的研究特别有吸引力因短时间从前驱分化的细胞10,转染的相对容易的RNAi 11-14,转基因15,16和表达的研究14,17,18, 在体外扩增回输体内 18-20,甚至排版埃里森生肌前体细胞及其调节剂等不同分类群21,22。而由于培养系统的人工环境的差异进行了说明5,23,这些体外系统已被证明是不可缺少的,以我们的管的多核形成错综复杂的程序的夹层,终末分化的单核myofibersfrom称为myosatellite增殖祖细胞细胞(MSCs)的哺乳动物之一。

哺乳动物之外,然而,控制肌肉发育机制,保护和/或发散了解甚少,主要是由于来自不同类群培养生肌前体细胞(MPC)中和成肌细胞的难度。事实上,主要的成肌细胞培养只被三鸟24-26一爬行动物27,少数两栖动物28-30,和一些鱼类1,3,4,31-33描述。从已经连续肌细胞系rtebrates比鼠类34-36其它更是少见,唯一的非哺乳动物肌细胞系被来自日本鹌鹑(Cortunix粳稻 )得出,QM7 37。尽管很多人试图在永生化,一个硬骨肌细胞系仍然是难以捉摸和协议,用于这些细胞的转染效率才公布,今年15。因此,非常需要从多种脊椎动物的培养主要的MPC和成肌细胞清楚和优化的协议,不仅进一步扩大我们的生肌程序的演变知识,而是采用比较生理学的力量取得突破的人骨骼肌疾病和病症的治疗。

虽然文献中的MPC /成肌细胞分离38-49很多报道,这是很常见的作家来描述简单,往往不完整,格式如隔离的协议。此外,最有启发性的协议回购RTED已经开发了用于小鼠50-53,并且其中的一些依赖于抗体的选择54,55或荧光的转基因56,57,使得这些协议不可用或通过肌肉生物学家使用不切实际的最深处非啮齿类动物物种。随着对鱼,两栖动物,爬行动物肌肉发育,详细和全面的协议,与视听的指导,并与远缘物种证明效率描述鲜为人知的,将是最有帮助的领域。

首先由鲍威尔和他的同事在1989年58所述,下列协议最初是从鲑鱼(即,虹鳟, 虹鳟和大西洋鲑, 大西洋鲑 )和一些较大的鲤科鱼类( 金鱼,Carassiusauratusauratus)隔离的MPC和成肌细胞。 2000年,Fauconneau和Paboeuf优化的主要成肌细胞培养虹鳟鱼59,minoroptimizations马去该协议利用的在亚科分支(斑马鱼, 斑马鱼 ,和巨人斑马,Devario aequipinnatus)32,由于可用于斑马鱼工作的许多遗传工具,因此,其近亲属的几个较小的小鱼。硬骨鱼是有吸引力的生物进行研究,由于其不同的发展战略(至少在大多数物种)。大鲑鱼,最喜欢的鱼类,生长不定,随着到期日由不受约束的渐近增长潜力,即使在年老60-62。与斑马鱼,大danionins如巨人斑马63和小胡子斑马显示增长潜力典型的硬骨鱼,使他们直接相拼理解一个理想的平台是否MPC细胞命运的选择对骨骼肌增生与肥大的作用。

同样地,我们已经证明,这个协议可与小鼠和蝾螈使用,具有相对高的细胞产量和VIABility指数。 Urodele蝾螈,如墨西哥蝾螈(Ambystomamexicanum),具备非凡的能力,再生组织,包括整个四肢和尾巴64-66。这一特点使得这些两栖动物有趣的骨骼肌萎缩和老化模型。使用下面描述的协议,类似的方法可以进行,这已在许多鱼种已经完成,为这类研究更广泛的比较方面。因为许多真正比较生物学家理解的,在基本的生物学和生物医学平移最有意义的进步可以当数据被最广泛的光谱范围内进行分析(在此,整个脊椎动物谱系)制成。

Protocol

伦理声明:所有涉及本文所述脊椎动物实验是事先由阿拉巴马大学伯明翰分校的机构动物护理和使用委员会,并与实验动物福利,健康美国全国学院办公室既定准则卫生与人类服务部。 1,文化准备制备基础培养基如下:9毫米的NaHCO 3(每2升1.51克),20mM的HEPES(每2升9.53克)的DMEM(13.48克/ L,每2升26.96克)。 确定pH值调整到7.40,用HCl或NaOH。 <…

Representative Results

二十四小时后播种,生肌前体细胞(MPC)中应该是可见的附着于层粘连蛋白基质(参见图1a和 1d)。以下播种,细胞(MPC)中采用一个纺锤状的形状,表示该信元类型( 图1),并MYOD1 +( 图2)。在斑马品种,多用途储值卡显得更紧凑,更小的双极型工艺比执行从虹鳟和褐种多用途储值卡。然而,在四天的文化,所有鱼品种多用途储值卡检…

Discussion

生肌方案,在任何检查的物种,可以最方便地通过一个体外系统的研究。事实上,在隔离,生肌前体细胞(MPC)中的鱼或myosatellite细胞(MSCs)在哺乳动物中很容易进入这个涉及细胞增殖,细胞周期停药,并成肌细胞的终末分化和融合的成肌成肌管新生的高度管制的过程。普遍缺乏鱼品种的转基因报告基因的菌株(与斑马鱼67和虹鳟鱼69可能是个例外)限制 MPC / MSC活…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者希望感谢许多扩展到博士。何塞普普拉纳斯和胡安·卡斯蒂略为他们的专业知识,在这种文化协议的开发和应用,以小型鱼类和两栖类动物。还要感谢的无数个人谁不知疲倦地帮助肌肉组织的许多鱼(无论是在种类和数量),包括马修充电,Delci克里斯滕森,扎卡里福勒,布鲁克弗伦岑,弥敦道弗勒利希,基拉马歇尔的解剖和分离,本·迈耶,伊桑Remily和Sinibaldo罗梅罗。这项工作是由阿拉巴马大学生物启动资金的伯明翰部,中心蛋白酶研究美国国立卫生研究院资助#2P20 RR015566,美国国立卫生研究院NIAMS格兰特#R03AR055350支持,并NDSU前进NSF资助#HRD-0811239到PRB。技术支持也由UAB的营养肥胖研究中心奖#P30DK056336,美国国立卫生研究院NIDDK提供, 其内容完全是作者的责任,并不一定代表了美国国立卫生研究院的官方意见。

Materials

Table 1. Detailed Reagent Information
Reagent Company (Preferred v. Alternate) Catalog Number (Preferred v. Alternate) Quantity per Culture
γ-irradiated poly-L-lysine Sigma-Aldrich (MP Biomedicals) P5899 (ICN19454405) 5 mg
DMEM (high glucose) Sigma-Aldrich (cellgro) MT-50-003-PB (D7777) 2 L
Laminin BD Biosciences (Sigma-Aldrich) CB-40232 (L2020) 1 mg
Sodium Bicarbonate (NaHCO3) Fisher Scientific (Sigma-Aldrich) BP328-500 (S5761) 1.51 g
HEPES (C8H18N2O4S) Fisher Scientific (Sigma-Aldrich) BP310-1 (H6147) 9.53 g
Antibiotic/Antimycotic Thermo Scientific (Sigma-Aldrich) SV3007901 (A5955) 17-20 mL
Gentamicin Sulfate Lonza (Sigma-Aldrich) BW17-519Z (G1397) 2-3 mL
Donor Equine Sera Thermo Scientific (Sigma-Aldrich) SH3007403 (H1270) 75 mL
Fetal Bovine Sera Thermo Scientific (Sigma-Aldrich) SH3007103 (F2442) 25 mL
Collagenase (Type IV) Worthington (Sigma-Aldrich) LS004189 (C9891) 0.44 g
Trypsin (from Pancreas) MP Biomedicals (Sigma-Aldrich) ICN15357125 (T5266) 1 g
Table 2. Consumables, Tools and Equipment
Consumable Tools Equipment
Cell Culture Plates Forceps (Coarse) Serological Pipettor
Sterile 50 mL Conical Tubes Forceps (Fine) pH Meter
Laboratory Tape Scalpel Handles Chilling Incubator (Echotherm)
0.2 μm Vacuum Sterilization Systems Scalpel Blades (#10, #11) Laminar Flow Hood
Water-repellant Autoclave Paper Surgical Scissors Vacuum Manifold
Serological Pipettes Glass Petri Dishes Microosmolality Meter
12-16 G Cannulas with Luer Locks
Table 3. Optimized Volumes for Coating Cell Culture Plates
Plate Size cm^2 per Well Poly-L-lysine* Laminin**
6 well 9.5 1.6 mL 1
24 well 1.9 0.32 0.2
48 well 0.95 0.16 0.1
96 well 0.32 0.06 0.03
*0.1 mg/mL concentration ** 0.020 mg/mL concentration
Table 4. Media for Isolation, Dissociation, and Culture
Reagent Isolation Wash Dissociation Complete
Base Medium 419.25 mL 395.40 mL 297.00 mL 178.00 mL
PSF* 5.00 mL 4.00 mL 3.00 mL 2.00 mL
Gentamicin Sulfate** 0.75 mL 0.60 mL
Donor Equine Serum 75.00 mL
Fetal Bovine Serum*** 20.00 mL
* PSF: penicillin/streptomycin/fungizone cocktail (100x); ** 50 mg/mL concentration; *** Characterized
Table 5. Recommended Dilutions and Plating Volumes
Plate Size cm^2 per Well Dilution Plating Volume
6 well 9.5 1.5-2.0×10^6 cells/mL 1 mL
24 well 1.9 1.5-2.0×10^6 cells/mL 250 μL
48 well 0.95 1.5-2.0×10^6 cells/mL 150 μL
96 well 0.32 1.5-2.0×10^6 cells/mL 50-100 μL
Table 6. Average number of cells per g tissue
Species Average # cells/g tissue
Danio rerio 6,400,000
Danio dangila 1,783,000
Devario aequipinnatus 1,797,000
Oncorhynchus mykiss 66,800
Table 7. Recommended Incubation Temperatures
Species Temperature
Danio/ Devario spp. 26 – 28 °C
Oncorhynchus/Salmo spp. 10* – 18 °C
Ambystoma mexicanum 18°C
* Lower temperatures support lower proliferation rates.

Referências

  1. Rescan, P. Y., Gauvry, L., Paboeuf, G. A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes. FEBS Letters. 362 (1), 89-92 (1995).
  2. Castillo, J., Codina, M., Martinez, M. L., Navarro, I., Gutierrez, J. Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 286 (5), 935-941 (2004).
  3. Bower, N. I., Johnston, I. A. Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 298 (6), 1615-1626 (2010).
  4. Funkenstein, B., Balas, V., Skopal, T., Radaelli, G., Rowlerson, A. Long-term culture of muscle explants from Sparus aurata. Tissue & Cell. 38 (6), 399-415 (2006).
  5. Cornelison, D. D. Context matters: in vivo and in vitro influences on muscle satellite cell activity. Journal of Cellular Biochemistry. 105 (3), 663-669 (2008).
  6. Harris, M. Quantitative growth studies with chick myoblasts in glass substrate cultures. Growth. 21 (3), 149-166 (1957).
  7. Cornelison, D. D., Wold, B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Biologia do Desenvolvimento. 191 (2), 270-283 (1997).
  8. Yablonka-Reuveni, Z., et al. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Biologia do Desenvolvimento. 210 (2), 440-455 (1999).
  9. Yablonka-Reuveni, Z., Seger, R., Rivera, A. J. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 47 (1), 23-42 (1999).
  10. Le Moigne, A., et al. Characterization of myogenesis from adult satellite cells cultured in vitro. The International Journal of Developmental Biology. 34 (1), 171-180 (1990).
  11. Tripathi, A. K., Ramani, U. V., Patel, A. K., Rank, D. N., Joshi, C. G. Short hairpin RNA-induced myostatin gene silencing in caprine myoblast cells in vitro. Applied Biochemistry and Biotechnology. 169 (2), 688-694 (2013).
  12. Ghahramani Seno, ., M, M., et al. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization. BMC Genomics. 11, 345 (2010).
  13. Honda, M., Hosoda, M., Kanzawa, N., Tsuchiya, T., Toyo-oka, T. Specific knockdown of delta-sarcoglycan gene in C2C12 in vitro causes post-translational loss of other sarcoglycans without mechanical stress. Molecular and Cellular Biochemistry. (1-2), 323-321 (2009).
  14. Rochard, P., et al. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. The Journal of Biological Chemistry. 275 (4), 2733-2744 (2000).
  15. Jackson, M. F., Hoversten, K. E., Powers, J. M., Trobridge, G. D., Rodgers, B. D. Genetic manipulation of myoblasts and a novel primary myosatellite cell culture system: comparing and optimizing approaches. The FEBS Journal. 280 (3), 827-839 (2013).
  16. McGrew, M. J., Rosenthal, N. Transgenic analysis of cardiac and skeletal myogenesis. Trends in Cardiovascular Medicine. 4 (6), 251-256 (1994).
  17. Dong, Y., Pan, J. S., Zhang, L. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS ONE. 8 (3), (2013).
  18. Chen, Y., Melton, D. W., Gelfond, J. A., McManus, L. M., Shireman, P. K. MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiological Genomics. 44 (21), 1042-1051 (2012).
  19. Shadrach, J. L., Wagers, A. J. Stem Cells for skeletal muscle repair. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 366 (1575), 2297-2306 (2011).
  20. Wu, X., Wang, S., Chen, B., An, X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell and Tissue Research. 340 (3), 549-567 (2010).
  21. Farini, A., Razini, P., Erratico, S., Torrente, Y., Meregalli, M. Cell based therapy for Duchenne muscular dystrophy. Journal of Cellular Physiology. 221 (3), 526-534 (2009).
  22. Kim, H. J., Archer, E., Escobedo, N., Tapscott, S. J., Unguez, G. A. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Developmental Dynamics: an Official Publication of the American Association of Anatomists. 237 (10), 2830-2843 (2008).
  23. McGann, C. J., Odelberg, S. J., Keating, M. T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proceedings of the National Academy of Sciences of the United States of America. 98 (24), 13699-13704 (2001).
  24. Cosgrove, B. D., Sacco, A., Gilbert, P. M., Blau, H. M. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation; Research in Biological Diversity. 78 (2-3), 2-3 (2009).
  25. Colbert, D. A., Edwards, K., Coleman, J. R. Studies on the organisation of the chicken genome and its expression during myogenesis in vitro. Differentiation; Research in Biological Diversity. 5 (2-3), 91-96 (1976).
  26. Bowman, L. H., Emerson, C. P. Post-transcriptional regulation of ribosome accumulation during myoblast differentiation. Cell. 10 (4), 587-596 (1977).
  27. Sun, S. S., McFarland, D. C., Ferrin, N. H., Gilkerson, K. K. Comparison of insulin-like growth factor interaction with satellite cells and embryonic myoblasts derived from the turkey. Comparative Biochemistry and Physiology. Comparative Physiology. 102 (2), 235-243 (1992).
  28. Marusich, M. F., Simpson, S. B. Changes in cell surface antigens during in vitro lizard myogenesis. Biologia do Desenvolvimento. 97 (2), 313-328 (1983).
  29. Schrag, J. A., Cameron, J. A. Regeneration of adult newt skeletal muscle tissue in vitro. Journal of Embryology and Experimental Morphology. 77, 255-271 (1983).
  30. Hinkle, L., McCaig, C. D., Robinson, K. R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. The Journal of Physiology. 314, 121-135 (1981).
  31. Yamane, H., Nishikawa, A. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation. In vitro Cellular & Developmental Biology Animal. , (2013).
  32. Alexander, M. S., et al. Isolation and transcriptome analysis of adult zebrafish cells enriched for skeletal muscle progenitors. Muscle & Nerve. 43 (5), 741-750 (2011).
  33. Froehlich, J. M., Galt, N. J., Charging, M. J., Meyer, B. M., Biga, P. R. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In vitro Cellular & Developmental Biology Animal. , (2013).
  34. Gabillard, J. C., Sabin, N., Paboeuf, G. In vitro characterization of proliferation and differentiation of trout satellite cells. Cell and Tissue Research. 342 (3), 471-477 (2010).
  35. Blau, H. M., Chiu, C. P., Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 32 (4), 1171-1180 (1983).
  36. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proceedings of the National Academy of Sciences of the United States of America. 61 (2), 477-483 (1968).
  37. Yaffe, D., Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 270 (5639), 725-727 (1977).
  38. Antin, P. B., Ordahl, C. P. Isolation and characterization of an avian myogenic cell line. Biologia do Desenvolvimento. 143 (1), 111-121 (1991).
  39. Malatesta, M., Giagnacovo, M., Cardani, R., Meola, G., Pellicciari, C. Human myoblasts from skeletal muscle biopsies: in vitro culture preparations for morphological and cytochemical analyses at light and electron microscopy. Methods in Molecular Biology. 976, 67-79 (2013).
  40. Scott, I. C., Tomlinson, W., Walding, A., Isherwood, B., Dougall, I. G. Large-scale isolation of human skeletal muscle satellite cells from post-mortem tissue and development of quantitative assays to evaluate modulators of myogenesis. Journal of Cachexia, Sarcopenia and Muscle. , 10-1007 (2013).
  41. Baquero-Perez, B., Kuchipudi, S. V., Nelli, R. K., Chang, K. C. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biology. 13, (2012).
  42. Lu, A., et al. Isolation of myogenic progenitor populations from Pax7-deficient skeletal muscle based on adhesion characteristics. Gene Therapy. 15 (15), 1116-1125 (2008).
  43. Rouger, K., et al. Progenitor cell isolation from muscle-derived cells based on adhesion properties. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 55 (6), 607-618 (2007).
  44. Michal, J., et al. Isolation and characterization of canine satellite cells. In vitro cellular & Developmental Biology Animal. 38, 467-480 (2002).
  45. McFarland, D. C., et al. Isolation and characterization of myogenic satellite cells from the muscular dystrophic hamster. Tissue & Cell. 32 (3), 257-265 (2000).
  46. Burton, N. M., Vierck, J., Krabbenhoft, L., Bryne, K., Dodson, M. V. Methods for animal satellite cell culture under a variety of conditions. Methods in Cell Science: an Official Journal of the Society for In vitro Biology. 22 (1), 51-61 (2000).
  47. Pavlath, G. K. Isolation, purification, and growth of human skeletal muscle cells. Methods in Molecular Medicine. 2, 307-317 (1996).
  48. Rosenblatt, J. D., Lunt, A. I., Parry, D. J., Partridge, T. A. Culturing satellite cells from living single muscle fiber explants. In vitro Cellular & Developmental Biology. Animal. 31 (10), 773-779 (1995).
  49. Doumit, M. E., Merkel, R. A. Conditions for isolation and culture of porcine myogenic satellite cells. Tissue & Cell. 24 (2), 253-262 (1992).
  50. Barjot, C., Jbilo, O., Chatonnet, A., Bacou, F. Expression of acetylcholinesterase gene during in vitro differentiation of rabbit muscle satellite cells. Neuromuscular Disorders: NMD. 3 (5-6), 443-446 (1993).
  51. Pasut, A., Oleynik, P., Rudnicki, M. A. Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods in Molecular Biology. 798, 53-64 (2012).
  52. Danoviz, M. E., Yablonka-Reuveni, Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods in Molecular Biology. 798, 21-52 (2012).
  53. Musaro, A., Barberi, L. Isolation and culture of mouse satellite cells. Methods in Molecular Biology. 633, 101-111 (2010).
  54. Sherwood, R. I., et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell. 119 (4), 543-554 (2004).
  55. Yi, L., Rossi, F. Purification of progenitors from skeletal muscle. J. Vis. Exp. (49), (2011).
  56. Tamaki, T., et al. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells and Development. 17 (4), 653-667 (2008).
  57. Bosnakovski, D., et al. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells. 26 (12), 3194-3204 (2008).
  58. Montarras, D., et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309 (5743), 2064-2067 (2005).
  59. Powell, R. L., Dodson, M. V., Cloud, J. G. Cultivation and differentiation of satellite cells from skeletal muscle of the rainbow trout Salmo gairdneri. Journal of Experimental Zoology. 250 (3), 333-338 (1989).
  60. Fauconneau, B., Paboeuf, G. Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss). Cell and Tissue Research. 301 (3), 459-463 (2000).
  61. Rescan, P. Y. Muscle growth patterns and regulation during fish ontogeny. General and Comparative Endocrinology. 142 (1-2), 111-116 (2005).
  62. Johnston, I. A., Bower, N. I., Macqueen, D. J. Growth and the regulation of myotomal muscle mass in teleost fish. The Journal of Experimental Biology. 214, 1617-1628 (2011).
  63. Mommsen, T. P. Paradigms of growth in fish. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 129 (2-3), 207-219 (2001).
  64. Biga, P. R., Goetz, F. W. Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 291 (5), 1327-1337 (2006).
  65. Roy, S., Gatien, S. Regeneration in axolotls: a model to aim for! Experimental Gerontology. 43 (11), 968-973 (2008).
  66. Echeverri, K., Tanaka, E. M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science. 298 (5600), 1993-1996 (2002).
  67. Tanaka, E. M., Reddien, P. W. The cellular basis for animal regeneration. Developmental Cell. 21 (1), 172-185 (2011).
  68. Froehlich, J. M., Galt, N. J., Charging, M. J., Meyer, B. M., Biga, P. R. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In vitro Cellular & Developmental Biology Animal. 49 (5), 371-385 (2013).
  69. Seger, C., et al. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Developmental Dynamics: an Official Publication of the American Association of Anatomists. 240 (11), 2440-2451 (2011).
  70. Gabillard, J. C., Ralliere, C., Sabin, N., Rescan, P. Y. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation. BMC Biotechnology. 10, (2010).
  71. Bond, M. D., Van Wart, H. E. Purification and separation of individual collagenases of Clostridium histolyticum using red dye ligand chromatography. Bioquímica. 23 (13), 3077-3085 (1984).
  72. Garikipati, D. K., Rodgers, B. D. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. The Journal of Endocrinology. 215 (1), 177-187 (2012).
  73. Sanchez-Gurmaches, J., Cruz-Garcia, L., Gutierrez, J., Navarro, I. mRNA expression of fatty acid transporters in rainbow trout: in vivo and in vitro regulation by insulin, fasting and inflammation and infection mediators. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. 163 (2), 177-188 (2012).
  74. Garikipati, D. K., Rodgers, B. D. Myostatin stimulates myosatellite cell differentiation in a novel model system: evidence for gene subfunctionalization. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 302 (9), 1059-1066 (2012).
  75. Vraskou, Y., et al. Direct involvement of tumor necrosis factor-&alpha; in the regulation of glucose uptake in rainbow trout muscle cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (3), 716-723 (1152).
  76. Cleveland, B. M., Weber, G. M. Effects of insulin-like growth factor-I, insulin, and leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary myocytes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 298 (2), 341-350 (2010).
  77. Seiliez, I., et al. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy. 8 (3), 364-375 (2012).
  78. Chapalamadugu, K. C., et al. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 153 (1), 66-72 (2009).
  79. Seiliez, I., et al. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. General and Comparative Endocrinology. 186, 9-15 (2013).
  80. Codina, M., et al. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. General and Comparative Endocrinology. 157 (2), 116-124 (2008).
  81. Seiliez, I., Sabin, N., Gabillard, J. C. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Molecular and Cellular Endocrinology. 351 (2), 220-226 (2012).
  82. Averous, J., Gabillard, J. C., Seiliez, I., Dardevet, D. Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation. Experimental Cell Research. 318 (3), 217-227 (2012).
  83. Fauconneau, B., Paboeuf, G. Sensitivity of muscle satellite cells to pollutants: an in vitro and in vivo comparative approach. Aquatic Toxicology. 53 (3-4), 247-263 (2001).

Play Video

Citar este artigo
Froehlich, J. M., Seiliez, I., Gabillard, J., Biga, P. R. Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages. J. Vis. Exp. (86), e51354, doi:10.3791/51354 (2014).

View Video