Summary

后生转换为安全和简单的方法来获得成人皮肤成纤维细胞胰岛素分泌细胞

Published: March 18, 2016
doi:

Summary

Here, a new method that allows the conversion of adult skin fibroblasts into insulin-secreting cells is presented. This technique is based on epigenetic conversion, does not involve the use of retroviral vectors nor the acquisition of a stable pluripotent state. It is therefore highly promising for translational medicine applications.

Abstract

Regenerative medicine requires new, fully functional cells that are delivered to patients in order to repair degenerated or damaged tissues. When such cells are not readily available, they can be obtained using different approaches that include, among the many, reprogramming and trans-differentiation, with advantages and limitations that are specific of the different techniques. Here a new strategy for the conversion of an adult mature fibroblast into an insulin-secreting cell, arbitrarily designated as epigenetic converted cells (EpiCC), is described. The method has been developed, based on the increasing understanding of the mechanisms controlling epigenetic regulation of cell fate and differentiation. In particular, the first step uses an epigenetic modifier, namely 5-aza-cytidine, to drive adult cells into a “highly permissive” state. It then takes advantage of this brief and reversible window of epigenetic plasticity, to re-address cells toward a different lineage. The approach is designated “epigenetic cell conversion”. It is a simple and robust way to obtain an efficient, controlled and stable cellular inter-lineage switch. Since the protocol does not involve the use of any gene transfection, it is free of viral vectors and does not involve a stable pluripotent state, it is highly promising for translational medicine applications.

Introduction

再生医学的一个基本目的是一种可用于修复或替换受损新,功能细胞的产生,退化的组织。重塑容易获得的成人细胞进入新的,通过从一种细胞类型转换到另一个,是一个特别有吸引力的方法,特别是当所需要的细胞群不丰富或难以进入。然而,成体细胞是相当稳定的。他们通过自己的选择逐渐限制获得他们分化 ​​状态,一旦他们达到成熟的终端专业化,他们稳定地保持它1。

在过去几年中的一些协议已被开发,即使重新编程到的体细胞(IPS)的多能性通过的一组转录因子2,3的强制表达来实现。另外,电池的转换可以通过直接的血统转获得,引进了4单</suP>或转录的组合因子5-7。这种策略不涉及通过去分化状态的转变,但需要高表达的特异性转录因子8。

最近,我们开发了一种基于成人细胞的短暂暴露于胞苷类似物的5-氮杂胞苷(5-氮杂CR)充分表征的DNA甲基转移酶抑制剂的去甲基化性质的转换协议。去甲基化步骤之后紧接着一个特定分化方案9-11,它允许以获得所需的终端的表型。这种方法能够成熟,分化的细胞转换成不同谱系的细胞,并具有相当大的优势,以避免同时使用病毒载体和任何外源性转录因子的转染。此次收购一个稳定的多能状态的,以及相关的易感性增加细胞的不稳定也是可以避免的。

<p class="“jove_content”">具体协议,允许成人皮肤成纤维细胞转化为全功能胰岛素分泌细胞是这里提出。然而,值得注意的是,该技术已被应用到不同类型的细胞,并产生积极的结果,解决向各种分化途径的细胞时。此外,后生转化已经成功在人类和猪物种9-13以及在狗中使用(手稿提交),表明该方法的广泛有效性和鲁棒性。

Protocol

注意:下面描述的所有的程序必须在无菌条件下层流罩下进行。确保所有培养过程在其整个处理上恒温控制的阶段进行,并维持细胞在37℃。 1.皮肤成纤维细胞分离准备培养皿涂料解决方案将0.1g猪明胶的在100ml水中(最终浓度0.1%)。用消毒液高压灭菌。 加入1.5毫升无菌0.1%猪的明胶为35 mm的培养皿。等待2小时,大衣,保持它们在室温下。 注意:人的皮肤活检通过?…

Representative Results

从皮肤活检原代培养的建立皮肤切片切成小碎片,并放置在明胶预涂覆的菜肴。 6天后,成纤维细胞开始生长出组织碎片和形成的细胞单层( 图1A)。细胞显示典型的细长的形状,正如预期的那样,显示的均匀免疫阳性的成纤维细胞特异性标记波形蛋白(Vim的, 图1B)。 形态学变化和甲基化皮肤?…

Discussion

本手稿描述了一种方法,其允许人皮肤成纤维细胞转化成产生胰岛素的细胞,通过瞬时和短暂暴露于5-氮杂CR,随后组织特异性诱导方案。这种方法允许中胚层内胚层到相关细胞的开关,无需转录因子或小分子RNA的强制表达,也不是收购一个稳定的多能状态中,使细胞更不稳定,容易出错14。

在第一步骤中,细胞可塑性增加由于在终末分化细胞诱导瞬态,可逆允许状态…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由Carraresi基金会和欧洲基金会糖尿病研究学会(EFSD)的资助。 GP是由米兰大学的博士后奖学金支持。作者是成本行动FA1201 Epiconcept成员:表观遗传学和围孕期环境和COST行动BM1308共享大型动物模型的进步(SALAAM)。 TALB是COST行动CM1406后生化学生物学(EPICHEM)的成员。

Materials

Dulbecco's Phosphate Buffered Saline Sigma D5652 PBS; for cell wash and solution preparation
Antibiotic Antimycotic Solution Sigma A5955 Component of Fibroblast, HP and Pancreatic media
100 mm petri dish Sarstedt 83.3902 For Fibroblast isolation
Porcine Gelatin Sigma G1890 For dish coating
Water Sigma W3500 For solution preparation
35 mm petri dishes Sarstedt 83.39 For Fibroblast isolation
DMEM, high glucose, pyruvate Life Technologies 41966052 For Fibroblast culture medium
Fetal Bovine Serum Life Technologies 10500064 FBS; Component of Fibroblast and HP media
L-Glutamine solution Sigma G7513 Component of Fibroblast, HP and Pancreatic media
Trypsin-EDTA solution Sigma T3924 For Fibroblast dissociation
KOVA GLASSTIC SLIDE 10 WITH GRIDS Hycor Biomedical 87144 Cell counting
5-Azacytidine Sigma A2385 5-aza-CR, for increrase cell plasticity in fibroblasts
Ham's F-10 Nutrient Mix Life Technologies 31550031 For HP medium
DMEM, low glucose, pyruvate Life Technologies 31885023 For HP medium
KnockOut Serum Replacement Life Technologies 10828028 Component of HP medium
MEM Non-Essential Amino Acids Solution Life Technologies 11140035 Component of HP and Pancreatic Basal media
2-Mercaptoethanol Sigma M7522 Component of HP and Pancreatic Basal media
Guanosine Sigma G6264 Nucleoside mix stock component of HP medium
Adenosine Sigma A4036 Nucleoside mix stock component of HP medium
Cytidine Sigma C4654 Nucleoside mix stock component of HP medium
Uridine Sigma U3003 Nucleoside mix stock component of HP medium
Thymidine Sigma T1895 Nucleoside mix stock component of HP medium
Millex-GS 0,22 µm Millipore SLGS033SB For sterilizing of solution
FGF-Basic (AA 1-155) Recombinant Human Protein Life Technologies PHG0261 bFGF; Component of HP and Pancreatic Basal medium
Bovine Serum Albumin Sigma A3311 BSA; Component of Pancreatic Basal medium
DMEM/F-12 Life Technologies 11320074 For Pancreatic Basal medium
B-27 Supplement Minus Vitamin A Life Technologies 12587010 Component of Pancreatic medium
N-2 Supplement Life Technologies 17502048 Component of Pancreatic Basal medium
Activin A Recombinant Human Protein Life Technologies PHG9014 For Pancreatic medium
Retinoic Acid Sigma R2625 For Pancreatic medium
Dimethyl sulfoxide Sigma D2650 DMSO; for Retinoic Acid stock preparation
Insulin-Transferrin-Selenium Life Technologies 41400045 ITS; for Pancreatic Final medium
Anti-Vimentin antibody  Abcam ab8069 For immunocytochemical analisys. Working dilution 1:100
4′,6-Diamidino-2-phenylindole dihydrochloride Sigma 32670 DAPI. For immunocytochemical analisys. Working dilution  1µg/ml
5-Methylcytidine Eurogentec MMS-900P-B For immunocytochemical analisys. Working dilution 1:500
Anti-C Peptide antibody  Abcam ab14181 For immunocytochemical analisys. Working dilution 1:100
Anti-PDX1 antibody  Abcam ab47267 For immunocytochemical analisys. Working dilution 1:500
Mercodia Insulin ELISA Mercodia 10-1113-10 For insulin release detection

Referências

  1. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 455 (7213), 627-632 (2008).
  2. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  3. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  4. Davis, R. L., Weintraub, H., Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 51 (6), 987-1000 (1987).
  5. Vierbuchen, T., et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 463 (7284), 1035-1041 (2010).
  6. Caiazzo, M., et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 476, 224-227 (2011).
  7. Huang, P., et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 475, 386-389 (2011).
  8. Marro, S., et al. Direct Lineage Conversion of Terminally Differentiated Hepatocytes to Functional Neurons. Cell Stem Cell. 9 (4), 374-382 (2011).
  9. Pennarossa, G., et al. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A. 110 (22), 8948-8953 (2013).
  10. Pennarossa, G., et al. Reprogramming of Pig Dermal Fibroblast into Insulin Secreting Cells by a Brief Exposure to 5-aza-cytidine. Stem Cell Rev. 10 (1), 31-43 (2014).
  11. Brevini, T. A., et al. Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and Addressed Toward Muscular Differentiation. Stem Cell Rev. 10 (5), 633-642 (2014).
  12. Thoma, E. C., et al. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports. 3 (4), 539-547 (2014).
  13. Mirakhori, F., Zeynali, B., Kiani, S., Baharvand, H. Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J. 17 (1), 153-158 (2015).
  14. Plath, K., Lowry, W. E. Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet. 12 (4), 253-265 (2011).
  15. Taylor, S. M., Jones, P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 17 (4), 771-779 (1979).
  16. Glover, T. W., Coyle-Morris, J., Pearce-Birge, L., Berger, C., Gemmill, R. M. DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am J Hum Genet. 38 (3), 309-318 (1986).
  17. Do, J. T., Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells. 22 (6), 941-949 (2004).
  18. Niwa, H. How is pluripotency determined and maintained?. Development. 134 (4), 635-646 (2007).
  19. Kahan, B. W., et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes. 52 (8), 2016-2024 (2003).
check_url/pt/53880?article_type=t

Play Video

Citar este artigo
Brevini, T. A., Pennarossa, G., Maffei, S., Zenobi, A., Gandolfi, F. Epigenetic Conversion as a Safe and Simple Method to Obtain Insulin-secreting Cells from Adult Skin Fibroblasts. J. Vis. Exp. (109), e53880, doi:10.3791/53880 (2016).

View Video