Summary

多酶筛选使用高通量基因酶的筛选系统

Published: August 08, 2016
doi:

Summary

This work presents a method of high-throughput screening using a universal genetic enzyme screening system that can be theoretically applied to over 200 enzymes. Here, the single screening system identifies three different enzymes (lipase, cellulase, and alkaline phosphatase) by simply changing the substrate used (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate).

Abstract

The recent development of a high-throughput single-cell assay technique enables the screening of novel enzymes based on functional activities from a large-scale metagenomic library1. We previously proposed a genetic enzyme screening system (GESS) that uses dimethylphenol regulator activated by phenol or p-nitrophenol. Since a vast amount of natural enzymatic reactions produce these phenolic compounds from phenol deriving substrates, this single genetic screening system can be theoretically applied to screen over 200 different enzymes in the BRENDA database. Despite the general applicability of GESS, applying the screening process requires a specific procedure to reach the maximum flow cytometry signals. Here, we detail the developed screening process, which includes metagenome preprocessing with GESS and the operation of a flow cytometry sorter. Three different phenolic substrates (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate) with GESS were used to screen and to identify three different enzymes (lipase, cellulase, and alkaline phosphatase), respectively. The selected metagenomic enzyme activities were confirmed only with the flow cytometry but DNA sequencing and diverse in vitro analysis can be used for further gene identification.

Introduction

最近开发的高通量的单细胞分析技术允许新的酶从基于其功能活动1大规模的基因库进行筛选。在单细胞水平,调节转录的蛋白质采用通过检测所生产作为目标酶活性的结果,小分子引发报告基因的表达。一种早期方法涉及从富养产碱 E2使用底物诱导的基因表达筛选(SIGEX)方法,其中基材诱导报告蛋白2的表达的酚降解操纵子的分离。 恶臭假单胞菌 NhaR用于选择苯甲醛脱氢酶3,并从谷氨酸棒杆菌 LysG被用于从不同的突变体文库4新的L-赖氨酸生产菌株的高通量筛选。

先前,遗传酶screeniNG系统(GESS)提出了一个普遍适用的筛选平台5。该系统采用酚系识别二甲调节器,DMPR,P恶臭 。 DMPR(E135K),和DMPR的突变体,也可以在GESS(PNP-GESS)检测p硝基苯酚(PNP)的使用。在生产酚醛化合物靶酶的存在下,GESS在大肠杆菌大肠杆菌细胞发出的荧光信号,能够使用荧光激活细胞分选仪(FACS)单细胞的快速分离。但宏基因组酶的表达似乎是比传统的重组酶的弱;因此,GESS旨在通过与最佳操作条件5沿调查核糖体结合位点(RBS)和终止子序列的组合以检测与最大灵敏度酚类化合物。

之一的GESS的基本优点是,这种单一的方法理论上允许OV的筛选器超过200种不同类型的BRENDA数据库酶( 表1对于http:// www.brenda-enzymes.info,2013.7)通过简单地采用不同的基板。它表明,纤维素酶,脂肪酶,和甲基对硫磷水解酶(MPH)可使用的pNP-GESS与硝基苯基丁酸酯,对硝基苯基- cellotrioside和甲基对硫磷,分别为5的适当底物进行检测。最近,证明了碱性磷酸酶(AP),其是使用的pNP-GESS确定的新酶之一,是在冷适应的海洋宏基因组6找到的第一个不耐热的AP。

这里,筛选过程的细节呈现的pNP-GESS检测三种不同类型的enzymes-脂肪酶,纤维素酶,和碱性磷酸酶的活动-and迅速从宏基因组文库5,6-识别新的候选酶。这些过程包括:宏基因组为PNP-GESS预处理和经营FL流式细胞仪分拣机。而获得的匹配将需要测序进一步鉴定,该协议覆盖的步骤执行到使用流式细胞仪的酶活性的确认的步骤。

Protocol

1.准备使用的PNP-GESS的宏基因组文库在构造一个E.宏基因组文库大肠杆菌用F粘粒载体使用根据制造商的方案5的fosmid文库生产套件。 等分试样在-70℃,这是宏基因组文库细胞源100微升用于存储的库。 注意:在这个库的库存为600nm(OD 600)的波长的测定的样品的光密度为约100。 在冰上解冻100微升股票宏基因组文库,并在含有50毫升的Luria-BERTANI(…

Representative Results

检查三酚基板按照该协议,以确定在泰安,韩国海洋滩涂沉积物的宏基因组文库的小说宏基因组酶。用于文库构建,平均30 – 40 kb的宏基因组序列插入到F黏粒,这是基于对大肠杆菌大肠杆菌 F因子的复制子和呈现为在细胞中的单一拷贝。注意,F黏粒已被广泛用于构造复杂的基因组文库,由于其稳定传播8。 …

Discussion

提高生物催化剂的生产效率是生物化工为主业9和宏基因组成功的关键被认为是最好的天然酶源之一。在这个意义上说,它是从那里大多数遗传资源还没有被开发10的宏基因组筛选新酶是必不可少的。几种筛选方法已经开发了使用转录激活11,12直接检测酶的产品,但这些技术需要特定代谢物应答转录系统。另一方面,GESS根据使用的苯酚或PNP标记底物是广泛适用的。虽然大多?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research was supported by grants from the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031944), the Next-Generation Biogreen 21 Program (PJ009524), NRF-2015M3D3A1A01064875 and the KRIBB Research Initiative Program.

Materials

CopyControl Epicentre CCFOS110 Fosmid library production kit 
CopyControl Induction Solution Epicentre CCIS125 Fosmid copy induction solution
EPI300 Epicentre EC300110 Electrocompetent cell
pCC1FOS Epicentre CCFOS110 Fosmid vector
Gene Pulser Mxcell Bio-Rad Electroporation cuvette and electroporate system
FACSAria III Becton Dickinson Flow Cytometry (FACS machine)
AZ100M Nikon Microscope 
UltraSlim  Maestrogen LED illuminator
50-mL conical tube BD Falcon
14-mL round-bottom tube  BD Falcon
5-mL round-bottom tube BD Falcon
p-nitrophenyl phosphate Sigma-Aldrich N7653 Substrate
p-nitrophenyl β-D-cellobioside Sigma-Aldrich N5759 Substrate
p-nitrophenyl butylate Sigma-Aldrich N9876  Substrate
Luria- Bertani (LB) BD Difco 244620 Tryptone 10g/L, Yeast extract 5g/L, Sodium Chloride 10g/L
Super Optimal broth (SOB) BD Difco 244310 Tryptone 20g/L, Yeast extract 5g/L, Sodium Chloride 0.5g/L, Magnesium Sulfate 2.4g/L, Potassium Chloride 186mg/L
Super Optimal broth with Catabolite repression (SOC) SOB, 0.4 % glucose
2x Yeast Extract Tryptone (2xYT) BD Difco 244020 Pancreatic digest of Casein 16g/L, Yeast extract 10g/L, Yeast extract 5g/L
Cell storage media 2xYT broth, 15 % Glycerol, 2 % Glucose
pGESS(E135K) A DNA vector containing dmpR, egfp genes with their appropriate promoters, RBS, and terminator.
See the reference 5 in the manuscript for more details.
Chloramphenicol Sigma C0378
Ampicillin Sigma A9518
BD FACSDiva Becton Dickinson Flow Cytometry Software Version 7.0
PBS Gibco 70011-044 0.8% NaCl, 0.02% KCl, 0.0144% Na2HPO4, 0.024% KH2OP4, pH 7.4

Referências

  1. Eggeling, L., Bott, M., Marienhagen, J. Novel screening methods-biosensors. Curr. Opin. Biotech. 35, 30-36 (2015).
  2. Uchiyama, T., Abe, T., Ikemura, T., Watanabe, K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol. 23 (1), 88-93 (2005).
  3. Van Sint Fiet, S., van Beilen, J. B., Witholt, B. Selection of biocatalysts for chemical synthesis. Proc. Natl. Acad. Sci. U. S. A. 103 (6), 1693-1698 (2006).
  4. Binder, S., et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13 (5), R40 (2012).
  5. Choi, S., et al. Toward a generalized and High-throughput Enzyme Screening System Based on Artificial Genetic Circuits. ACS Synthetic Biology. 3 (3), 163-171 (2014).
  6. Lee, D. H., et al. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnology. 15 (1), (2015).
  7. Warnecke, F., et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450 (7169), 560-565 (2007).
  8. Kim, U. J., Shizuya, H., de Jong, P. J., Birren, B., Simon, M. I. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Research. 20 (5), 1083-1085 (1992).
  9. Jemli, S., Ayadi-Zouari, D., Hlima, H. B., Bejar, S. Biocatalysts: application and engineering for industrial purposes. Crc. Cr. Rev. Biotechn. 36 (2), 246-258 (2014).
  10. Lorenz, P., Eck, J. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3 (6), 510-516 (2005).
  11. Uchiyama, T., Miyazaki, K. Product-induced gene expression, a product responsive reporter assay used to screen metagenomic libraries for enzyme encoding genes. Applied and environmental microbiology. 76 (21), 7029-7035 (2010).
  12. Mohn, W. W., Garmendia, J., Galvao, T. C., De Lorenzo, V. Surveying bio-transformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. Environmental microbiology. 8 (3), 546-555 (2006).
  13. Tang, S. Y., Cirino, P. C. Design and application of a mevalonate-responsive regulatory protein. Angew Chem. Int. Ed. 50 (5), 1084-1086 (2011).
  14. Jha, R. K., Kern, T. L., Fox, D. T., Strauss, C. E. M. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res. 42 (12), 8150-8160 (2014).
check_url/pt/54059?article_type=t

Play Video

Citar este artigo
Kim, H., Kwon, K. K., Seong, W., Lee, S. Multi-enzyme Screening Using a High-throughput Genetic Enzyme Screening System. J. Vis. Exp. (114), e54059, doi:10.3791/54059 (2016).

View Video