Summary

Multi-enzym Screening Ved hjælp af en High-throughput Genetic Enzyme Screening System

Published: August 08, 2016
doi:

Summary

This work presents a method of high-throughput screening using a universal genetic enzyme screening system that can be theoretically applied to over 200 enzymes. Here, the single screening system identifies three different enzymes (lipase, cellulase, and alkaline phosphatase) by simply changing the substrate used (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate).

Abstract

The recent development of a high-throughput single-cell assay technique enables the screening of novel enzymes based on functional activities from a large-scale metagenomic library1. We previously proposed a genetic enzyme screening system (GESS) that uses dimethylphenol regulator activated by phenol or p-nitrophenol. Since a vast amount of natural enzymatic reactions produce these phenolic compounds from phenol deriving substrates, this single genetic screening system can be theoretically applied to screen over 200 different enzymes in the BRENDA database. Despite the general applicability of GESS, applying the screening process requires a specific procedure to reach the maximum flow cytometry signals. Here, we detail the developed screening process, which includes metagenome preprocessing with GESS and the operation of a flow cytometry sorter. Three different phenolic substrates (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate) with GESS were used to screen and to identify three different enzymes (lipase, cellulase, and alkaline phosphatase), respectively. The selected metagenomic enzyme activities were confirmed only with the flow cytometry but DNA sequencing and diverse in vitro analysis can be used for further gene identification.

Introduction

En nyligt udviklet high-throughput enkelt-celleassay teknik muliggør hidtil ukendte enzymer, der skal screenes fra en storstilet genetisk bibliotek baseret på deres funktionelle aktiviteter 1. På enkelt celle niveau, er proteiner, der regulerer transkription anvendes til at udløse reportergenekspression ved at registrere små molekyler, der er produceret som et resultat af et mål-enzymaktivitet. En tidlig fremgangsmåde involverede isolering af en phenol-nedbrydende operon fra Ralstonia eutropha E2 anvendelse af substratet-inducerede genetiske ekspression screening (SIGEX) fremgangsmåde, ved hvilken substratet inducerer ekspressionen af et reporter-protein 2. Nhar af Pseudomonas putida blev anvendt til at vælge benzaldehyd dehydrogenase 3, og LysG fra Corynebacterium glutamicum blev anvendt for high-throughput screening af en ny L-lysin-producerende stamme fra forskellige mutantbiblioteker 4.

Tidligere en genetisk enzym flotationng-system (GESS) blev foreslået som en generelt gældende screening platform 5. Dette system bruger phenolen-genkendende dimethylphenol regulator, DmpR, af P. putida. DmpR (E135K), og en mutant af DmpR, kan også anvendes i GESS (pNP-GESS) til påvisning af p-nitrophenol (pNP). I nærvær af målenzymer producerer phenolforbindelser, GESS i E. coli celler udsender et fluorescenssignal, giver mulighed for hurtig isolering af enkelte celler under anvendelse af en fluorescens-aktiveret cellesorterer (FACS). Men ekspressionen af ​​metagenomisk enzym synes at være svagere end i konventionelle rekombinante enzymer; derfor blev GESS designet til at detektere phenolforbindelser med maksimal følsomhed ved at undersøge kombinationen af ribosomale bindingssted (RBS) og terminatorsekvenser sammen med optimal driftstilstand 5.

Et af de grundlæggende fordele ved GESS er, at denne enkelt metode teoretisk muliggør screening af ovis end 200 forskellige typer af enzymer i BRENDA databasen (tabel 1, http: // www.brenda-enzymes.info, 2013.7) ved blot at ansætte forskellige substrater. Det blev vist, cellulase, lipase, og kan påvises methyl parathion hydrolase (MPH) ved anvendelse pNP-GESS med passende substrater af p-nitrophenyl-butyrat, p-nitrophenyl-cellotrioside og methyl parathion, henholdsvis 5. For nylig blev det vist, at et alkalisk phosphatase (AP), som er en af de hidtil ukendte enzymer identificeret ved anvendelse pNP-GESS, er den første termolabile AP findes i koldadapterede marine metagenomes 6.

Her er detaljerne i screeningsprocessen præsenteret med pNP-GESS afsløre aktiviteter tre forskellige typer af enzymes- lipase, cellulase, og alkalisk fosfatase -og hurtigt at identificere nye kandidatlande enzymer fra en metagenomisk bibliotek 5,6. Processerne omfatter metagenomet forbehandling med pNP-GESS og drift af en flow cytometri sorteringsanlæg. Mens de opnåede hits vil skulle sekventeret for yderligere identifikation, denne protokol dækker proceduren indtil trinnene enzymaktivitet bekræftelse ved anvendelse af flowcytometri.

Protocol

1. Forberedelse af metagenomisk Bibliotek med pNP-GESS Konstruer en metagenomisk bibliotek i E. coli med en fosmid vektor under anvendelse af en fosmid biblioteksproduktion kit ifølge producentens protokol 5. Portion 100 pi af biblioteket til opbevaring ved -70 ° C, hvilket er en kilde til metagenomisk bibliotekets celler. Bemærk: Den optiske densitet af en prøve målt ved en bølgelængde på 600 nm (OD 600) i denne bibliotekets er cirka 100. Opt?…

Representative Results

De tre phenoliske substrater blev undersøgt for at identificere nye metagenomisk enzymer fra en metagenomet bibliotek af ocean-tidevandsenergi flad sedimenter i Taean, Sydkorea ved at følge den foreslåede protokol. For biblioteket konstruktion, gennemsnitlig 30 – blev 40 kb metagenom sekvenser indsat i fosmids, som er baseret på E. coli F faktor replikon og præsenteres som en enkelt kopi i en celle. Bemærk, at fosmids er ofte blevet brugt til at konstruere komplekse genomi…

Discussion

Øget produktion effektivitet biokatalysatorer er nøglen til succes for bio-kemiske industri 9 og metagenomet betragtes som en af de bedste naturlige enzym kilde. I denne forbindelse er det vigtigt at screene hidtil ukendte enzymer fra metagenomet hvor størstedelen af de genetiske ressourcer ikke er blevet udforsket 10. Adskillige screeningsmetoder er blevet udviklet som direkte opdage enzymprodukter hjælp transkriptionelle aktivatorer 11, 12, men disse teknikker kræver specifik meta…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research was supported by grants from the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031944), the Next-Generation Biogreen 21 Program (PJ009524), NRF-2015M3D3A1A01064875 and the KRIBB Research Initiative Program.

Materials

CopyControl Epicentre CCFOS110 Fosmid library production kit 
CopyControl Induction Solution Epicentre CCIS125 Fosmid copy induction solution
EPI300 Epicentre EC300110 Electrocompetent cell
pCC1FOS Epicentre CCFOS110 Fosmid vector
Gene Pulser Mxcell Bio-Rad Electroporation cuvette and electroporate system
FACSAria III Becton Dickinson Flow Cytometry (FACS machine)
AZ100M Nikon Microscope 
UltraSlim  Maestrogen LED illuminator
50-mL conical tube BD Falcon
14-mL round-bottom tube  BD Falcon
5-mL round-bottom tube BD Falcon
p-nitrophenyl phosphate Sigma-Aldrich N7653 Substrate
p-nitrophenyl β-D-cellobioside Sigma-Aldrich N5759 Substrate
p-nitrophenyl butylate Sigma-Aldrich N9876  Substrate
Luria- Bertani (LB) BD Difco 244620 Tryptone 10g/L, Yeast extract 5g/L, Sodium Chloride 10g/L
Super Optimal broth (SOB) BD Difco 244310 Tryptone 20g/L, Yeast extract 5g/L, Sodium Chloride 0.5g/L, Magnesium Sulfate 2.4g/L, Potassium Chloride 186mg/L
Super Optimal broth with Catabolite repression (SOC) SOB, 0.4 % glucose
2x Yeast Extract Tryptone (2xYT) BD Difco 244020 Pancreatic digest of Casein 16g/L, Yeast extract 10g/L, Yeast extract 5g/L
Cell storage media 2xYT broth, 15 % Glycerol, 2 % Glucose
pGESS(E135K) A DNA vector containing dmpR, egfp genes with their appropriate promoters, RBS, and terminator.
See the reference 5 in the manuscript for more details.
Chloramphenicol Sigma C0378
Ampicillin Sigma A9518
BD FACSDiva Becton Dickinson Flow Cytometry Software Version 7.0
PBS Gibco 70011-044 0.8% NaCl, 0.02% KCl, 0.0144% Na2HPO4, 0.024% KH2OP4, pH 7.4

Referências

  1. Eggeling, L., Bott, M., Marienhagen, J. Novel screening methods-biosensors. Curr. Opin. Biotech. 35, 30-36 (2015).
  2. Uchiyama, T., Abe, T., Ikemura, T., Watanabe, K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol. 23 (1), 88-93 (2005).
  3. Van Sint Fiet, S., van Beilen, J. B., Witholt, B. Selection of biocatalysts for chemical synthesis. Proc. Natl. Acad. Sci. U. S. A. 103 (6), 1693-1698 (2006).
  4. Binder, S., et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13 (5), R40 (2012).
  5. Choi, S., et al. Toward a generalized and High-throughput Enzyme Screening System Based on Artificial Genetic Circuits. ACS Synthetic Biology. 3 (3), 163-171 (2014).
  6. Lee, D. H., et al. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnology. 15 (1), (2015).
  7. Warnecke, F., et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450 (7169), 560-565 (2007).
  8. Kim, U. J., Shizuya, H., de Jong, P. J., Birren, B., Simon, M. I. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Research. 20 (5), 1083-1085 (1992).
  9. Jemli, S., Ayadi-Zouari, D., Hlima, H. B., Bejar, S. Biocatalysts: application and engineering for industrial purposes. Crc. Cr. Rev. Biotechn. 36 (2), 246-258 (2014).
  10. Lorenz, P., Eck, J. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3 (6), 510-516 (2005).
  11. Uchiyama, T., Miyazaki, K. Product-induced gene expression, a product responsive reporter assay used to screen metagenomic libraries for enzyme encoding genes. Applied and environmental microbiology. 76 (21), 7029-7035 (2010).
  12. Mohn, W. W., Garmendia, J., Galvao, T. C., De Lorenzo, V. Surveying bio-transformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. Environmental microbiology. 8 (3), 546-555 (2006).
  13. Tang, S. Y., Cirino, P. C. Design and application of a mevalonate-responsive regulatory protein. Angew Chem. Int. Ed. 50 (5), 1084-1086 (2011).
  14. Jha, R. K., Kern, T. L., Fox, D. T., Strauss, C. E. M. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res. 42 (12), 8150-8160 (2014).
check_url/pt/54059?article_type=t

Play Video

Citar este artigo
Kim, H., Kwon, K. K., Seong, W., Lee, S. Multi-enzyme Screening Using a High-throughput Genetic Enzyme Screening System. J. Vis. Exp. (114), e54059, doi:10.3791/54059 (2016).

View Video