Summary

Multi-enzymet Screening Ved hjelp av en High-throughput Genetisk Enzyme Screening System

Published: August 08, 2016
doi:

Summary

This work presents a method of high-throughput screening using a universal genetic enzyme screening system that can be theoretically applied to over 200 enzymes. Here, the single screening system identifies three different enzymes (lipase, cellulase, and alkaline phosphatase) by simply changing the substrate used (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate).

Abstract

The recent development of a high-throughput single-cell assay technique enables the screening of novel enzymes based on functional activities from a large-scale metagenomic library1. We previously proposed a genetic enzyme screening system (GESS) that uses dimethylphenol regulator activated by phenol or p-nitrophenol. Since a vast amount of natural enzymatic reactions produce these phenolic compounds from phenol deriving substrates, this single genetic screening system can be theoretically applied to screen over 200 different enzymes in the BRENDA database. Despite the general applicability of GESS, applying the screening process requires a specific procedure to reach the maximum flow cytometry signals. Here, we detail the developed screening process, which includes metagenome preprocessing with GESS and the operation of a flow cytometry sorter. Three different phenolic substrates (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate) with GESS were used to screen and to identify three different enzymes (lipase, cellulase, and alkaline phosphatase), respectively. The selected metagenomic enzyme activities were confirmed only with the flow cytometry but DNA sequencing and diverse in vitro analysis can be used for further gene identification.

Introduction

En nylig utviklet høy gjennomstrømming encellede analysen teknikken gjør nye enzymer for å være skjermet fra en storstilt genetisk bibliotek basert på deres funksjonelle aktiviteter 1. På celle-nivået, blir proteiner som regulerer transkripsjon anvendes for å utløse reporter-gen-ekspresjon ved å avføle små molekyler som er produsert som et resultat av en target enzymaktivitet. En tidlig metode omfattet isolering av en fenol-nedbrytende operonet fra Ralstonia eutropha E2 ved hjelp av substrat-indusert ekspresjon genetisk screening (SIGEX) -metoden, hvor substratet induserer ekspresjon av et rapportørprotein 2. Nhar av Pseudomonas putida ble brukt til å velge benzaldehyd dehydrogenase 3, og LysG fra Corynebacterium glutamicum ble anvendt for high-throughput screening av en ny L-lysin-produserende stamme fra forskjellige mutante biblioteker 4.

Tidligere en genetisk enzymet maskeringsng system (GESS) ble foreslått som et generelt gjelder screening plattform 5. Dette systemet bruker fenol-gjenkjenne dimetylfenol regulator, DmpR, P. putida. DmpR (E135K) og en mutant av DmpR, kan også anvendes i GESS (PNP-GESS) for deteksjon av p-nitrofenol (PNP). I nærvær av mål-enzymer som produserer fenoliske forbindelser, GESS i E. coli-celler avgir en fluorescens-signal, slik at den hurtig isolering av enkeltceller ved hjelp av et fluorescens-aktivert cellesorterer (FACS). Men ekspresjonen av metagenomic enzym synes å være svakere enn den for konvensjonelle rekombinante enzymer; Derfor GESS er designet for å oppdage fenoliske forbindelser med maksimal følsomhet ved å undersøke kombinasjonen av ribosomale bindingssetet (RBS) og terminatorsekvenser sammen med optimal driftstilstand 5.

En av de grunnleggende fordelene ved GESS er at denne enkle metode teoretisk tillater screening av over enn 200 forskjellige typer enzymer i Brenda databasen (tabell 1, http: // www.brenda-enzymes.info, 2013.7) ved bare å bruke forskjellige underlag. Det ble vist at cellulase, lipase, og metyl-paration hydrolase (MPH) kan påvises ved hjelp av PNP-GESS med passende substrater for p-nitrofenyl butyrat, p-nitrofenyl-cellotrioside, og metyl-paration, henholdsvis 5. Nylig ble det vist at et alkalisk fosfatase (AP), som er en av de nye enzymer som er identifisert ved hjelp av pnp-GESS, er den første termolabile AP befinner seg i kuldetilpassede marine metagenomes 6.

Her er detaljene for screening prosessen presenteres med PnP-GESS påvise aktivitetene til tre ulike typer enzymes- lipase, cellulase og alkalisk fosfatase -og raskt identifisere nye kandidat enzymer fra en metagenomic bibliotek 5,6. Prosessene omfatter metagenome preprosessering med PnP-GESS og opererer en flow cytometri sorter. Mens treff som oppnås vil måtte bli sekvensert for ytterligere identifikasjon, denne protokollen omfatter fremgangsmåten opp til trinnene av enzymaktivitet bekreftelse ved hjelp av flow cytometri.

Protocol

1. Preparing the Metagenomic Library with pNP-GESS Construct a metagenomic library in E. coli with a fosmid vector using a fosmid library production kit according to the manufacturer's protocol 5. Aliquot 100 µl of the library for storage at −70 °C, which is a source of metagenomic library cells. Note: The optical density of a sample measured at a wavelength of 600 nm (OD600) of this library stock is approximately 100. Thaw 100 &#18…

Representative Results

The three phenolic substrates were examined to identify novel metagenomic enzymes from a metagenome library of ocean-tidal flat sediments in Taean, South Korea by following the proposed protocol. For the library construction, average 30 – 40 kb metagenome sequences were inserted into fosmids, which are based on the E. coli F factor replicon and presented as a single copy in a cell. Note that fosmids have been widely used for constructing complex genomic libraries due to their sta…

Discussion

Increasing production efficiency of biocatalysts is a key for the success of bio-chemical based industry9 and metagenome is considered one of the best natural enzyme source. In this sense, it is essential to screening novel enzymes from the metagenome where majority of the genetic resources have not been explored10. Several screening methods have been developed which directly detect enzyme products using transcriptional activators11, 12 but these techniques require specific metabolite-res…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research was supported by grants from the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031944), the Next-Generation Biogreen 21 Program (PJ009524), NRF-2015M3D3A1A01064875 and the KRIBB Research Initiative Program.

Materials

CopyControl Epicentre CCFOS110 Fosmid library production kit 
CopyControl Induction Solution Epicentre CCIS125 Fosmid copy induction solution
EPI300 Epicentre EC300110 Electrocompetent cell
pCC1FOS Epicentre CCFOS110 Fosmid vector
Gene Pulser Mxcell Bio-Rad Electroporation cuvette and electroporate system
FACSAria III Becton Dickinson Flow Cytometry (FACS machine)
AZ100M Nikon Microscope 
UltraSlim  Maestrogen LED illuminator
50-mL conical tube BD Falcon
14-mL round-bottom tube  BD Falcon
5-mL round-bottom tube BD Falcon
p-nitrophenyl phosphate Sigma-Aldrich N7653 Substrate
p-nitrophenyl β-D-cellobioside Sigma-Aldrich N5759 Substrate
p-nitrophenyl butylate Sigma-Aldrich N9876  Substrate
Luria- Bertani (LB) BD Difco 244620 Tryptone 10g/L, Yeast extract 5g/L, Sodium Chloride 10g/L
Super Optimal broth (SOB) BD Difco 244310 Tryptone 20g/L, Yeast extract 5g/L, Sodium Chloride 0.5g/L, Magnesium Sulfate 2.4g/L, Potassium Chloride 186mg/L
Super Optimal broth with Catabolite repression (SOC) SOB, 0.4 % glucose
2x Yeast Extract Tryptone (2xYT) BD Difco 244020 Pancreatic digest of Casein 16g/L, Yeast extract 10g/L, Yeast extract 5g/L
Cell storage media 2xYT broth, 15 % Glycerol, 2 % Glucose
pGESS(E135K) A DNA vector containing dmpR, egfp genes with their appropriate promoters, RBS, and terminator.
See the reference 5 in the manuscript for more details.
Chloramphenicol Sigma C0378
Ampicillin Sigma A9518
BD FACSDiva Becton Dickinson Flow Cytometry Software Version 7.0
PBS Gibco 70011-044 0.8% NaCl, 0.02% KCl, 0.0144% Na2HPO4, 0.024% KH2OP4, pH 7.4

Referências

  1. Eggeling, L., Bott, M., Marienhagen, J. Novel screening methods-biosensors. Curr. Opin. Biotech. 35, 30-36 (2015).
  2. Uchiyama, T., Abe, T., Ikemura, T., Watanabe, K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol. 23 (1), 88-93 (2005).
  3. Van Sint Fiet, S., van Beilen, J. B., Witholt, B. Selection of biocatalysts for chemical synthesis. Proc. Natl. Acad. Sci. U. S. A. 103 (6), 1693-1698 (2006).
  4. Binder, S., et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13 (5), R40 (2012).
  5. Choi, S., et al. Toward a generalized and High-throughput Enzyme Screening System Based on Artificial Genetic Circuits. ACS Synthetic Biology. 3 (3), 163-171 (2014).
  6. Lee, D. H., et al. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnology. 15 (1), (2015).
  7. Warnecke, F., et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 450 (7169), 560-565 (2007).
  8. Kim, U. J., Shizuya, H., de Jong, P. J., Birren, B., Simon, M. I. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Research. 20 (5), 1083-1085 (1992).
  9. Jemli, S., Ayadi-Zouari, D., Hlima, H. B., Bejar, S. Biocatalysts: application and engineering for industrial purposes. Crc. Cr. Rev. Biotechn. 36 (2), 246-258 (2014).
  10. Lorenz, P., Eck, J. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3 (6), 510-516 (2005).
  11. Uchiyama, T., Miyazaki, K. Product-induced gene expression, a product responsive reporter assay used to screen metagenomic libraries for enzyme encoding genes. Applied and environmental microbiology. 76 (21), 7029-7035 (2010).
  12. Mohn, W. W., Garmendia, J., Galvao, T. C., De Lorenzo, V. Surveying bio-transformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. Environmental microbiology. 8 (3), 546-555 (2006).
  13. Tang, S. Y., Cirino, P. C. Design and application of a mevalonate-responsive regulatory protein. Angew Chem. Int. Ed. 50 (5), 1084-1086 (2011).
  14. Jha, R. K., Kern, T. L., Fox, D. T., Strauss, C. E. M. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res. 42 (12), 8150-8160 (2014).

Play Video

Citar este artigo
Kim, H., Kwon, K. K., Seong, W., Lee, S. Multi-enzyme Screening Using a High-throughput Genetic Enzyme Screening System. J. Vis. Exp. (114), e54059, doi:10.3791/54059 (2016).

View Video