Summary

1,2- Azaborinesの合成とT4リゾチーム変異体とのタンパク質複合体の調製

Published: March 25, 2017
doi:

Summary

A protocol for the synthesis of 1,2-azaborines and the preparation of their protein complexes with T4 lysozyme mutants is presented.

Abstract

We describe a general synthesis of 1,2-azaborines using standard air-free techniques and protein complex preparation with T4 lysozyme mutants by vapor diffusion. Oxygen- and moisture-sensitive compounds are prepared and isolated under an inert atmosphere (N2) using either a vacuum gas manifold or a glove box. As an example of azaborine synthesis, we demonstrate the synthesis and purification of the volatile N-H-B-ethyl-1,2-azaborine by a five-step sequence involving distillation and column chromatography for the isolation of products. T4 lysozyme mutants L99A and L99A/M102Q are expressed with Escherichia coli RR1 strain. Standard protocols for chemical cell lysis followed by purification using carboxymethyl ion exchange column affords protein of sufficiently high purity for crystallization. Protein crystallization is performed in various concentrations of precipitant at different pH ranges using the hanging drop vapor diffusion method. Complex preparation with the small molecules is carried out by vapor diffusion method under an inert atmosphere. X-ray diffraction analysis of the crystal complex provides unambiguous structural evidence of binding interactions between the protein binding site and 1,2-azaborines.

Introduction

複素環( すなわち 、1,2- azaborines)を含むホウ素-窒素は、最近、アレーンのアイソスターとして大きな注目を集めています。この等電子性化学空間2、3、4展開するために、既存の構造モチーフの多様化につながる可能性があります。 Azaborines特に化学が構造のライブラリーと機能的に関連する分子の合成を行った医薬品化学の分野で、生物医学研究5、6、7、8で使用するための潜在的な有用性を有します。重要なことに、しかし、一方、利用可能なアレーン含有分子に多数のよく発達した合成経路があり、azaborinesの合成のための方法の限られた数が報告されている9、10、 </s> 11、12、13アップ。これは、ホウ素源と空気と合成配列の初期段階における分子の湿気に敏感な性質のためにオプションの限られた数の主です。

この記事の最初の部分では、(3)標準エアフリー技術を用いて、N -TBS- B -Cl-1,2- azaborineのマルチグラム規模の合成を説明します。この化合物は、さらに、構造的に、より複雑な分子14、15に官能化することができる汎用性の高い中間体として機能します。 3から出発して、タンパク質結合研究に使用するためのN -H- Bエチル-1,2- azaborineの合成および精製(5)について説明します。 5の揮発性のために、その効率的な分離は、反応温度、時間、およびDISTの正確な制御を必要とします推理条件。

第二部では、タンパク質発現およびT4リゾチーム変異体(L99A及びL99A / M102Q)17、18、19の単離のためのプロトコルは、20は、タンパク質結晶化およびタンパク質-リガンドの結晶複合体の調製に続いて、提示されます。 T4リゾチーム変異体L99A及びL99A / M102Qがazaborine分子17を含むNHの水素結合能を調べるために、生物学的モデル系として選択しました。標準的な分子生物学プロトコルを用いて、タンパク質を大腸菌 RR1株で発現させ、イソプロピルβ-D-1-チオガラクトピラノシド(IPTG)で誘導されます。タンパク質精製は、イオン交換カラムクロマトグラフィーを用いて行われます。タンパク質の結晶化は、吊り下げを使用し、高度に濃縮された精製されたタンパク質溶液(ゲル電気泳動によって純度> 95%)を用いて行われます蒸気拡散法をドロップします。そのため、酸素に対する本研究のリガンドの感度が、タンパク質 – リガンド複合体は、空気を含まない条件下で製造されます。

Protocol

注:全ての酸素および水分に敏感な操作は、標準的な空気を含まない技術またはグローブボックスのいずれかを用いて不活性雰囲気(N 2)下で行いました。 THF(テトラヒドロフラン)をEt 2 O(ジエチルエーテル)、CH 2 Cl 2(ジクロロメタン)、トルエン、ペンタン、アルゴン下、中性アルミナカラムを通して精製しました。アセトニトリルをCaH 2(水…

Representative Results

1,2- azaborinesするための模式的な合成経路は、図1に示されています。このプロトコルは、5つの異なるホウ素 – 窒素含有分子の合成に適用されます。 図2は 、所望の生成物(3)の形成を監視するために、ステップ1.3の過程で測定された11 B NMRスペクトルを表します。タンパク質の精製は、低圧クロマトグラフィーシステム?…

Discussion

このプロトコルの最初の部分では、我々は以前に報告された方法12、13に基づいて、1,2- azaborinesの修正された合成を説明しました。 Triallylborane 22を準備するallyltriphenylスズやカリウムallyltrifluoroborateを使用して、ルートの代替として使用されたN -allyl- N -TBS- B -アリル塩化付加物(1)。この方法は、よ…

Declarações

The authors have nothing to disclose.

Acknowledgements

This research was supported by the National Institutes of Health NIGMS (R01-GM094541) and Boston College.

Materials

Tetrahydrofuran (THF), inhibitor-free, for HPLC, ≥99.9% Sigma Aldrich 34865
Diethyl ether (Et2O), for HPLC, ≥99.9%, inhibitor-free Sigma Aldrich 309966
Methylene chloride  (CH2Cl2), (Stabilized/Certified ACS) Fisher D37-20
Toluene Fisher T290-4
Pentane, HPLC Fisher P399-4
Acetonitrile Fisher A21-4
Calcium hydride (CaH2), reagent grade, 95% Sigma Aldrich 208027 Pyrophoric
Palladium on activated carbon (Pd/C), 10 wt% Pd Strem 46-1900
1.0 M Boron trichloride solution in hexane Sigma Aldrich 211249 Highly toxic/ Pyrophoric
Triethylamine, ≥99.5% Sigma Aldrich 471283
Grubbs 1st generation catalyst  materia C823
Acetamide Sigma Aldrich A0500
n-Butanol, anhydrous, 99.8% Sigma Aldrich 281549
Ethyllithium solution, 0.5 M in benzene/cyclohexane Sigma Aldrich 561452 Highly toxic/ Pyrophoric
HCl solution, 2.0 M in Et2O Sigma Aldrich 455180
2-Methylbutane, anhydrous, ≥99% Sigma Aldrich 277258
Escherichia coli, (Migula) Castellani and Chalmers (ATCC® 31343™) ATCC 31343
T4 lysozyme WT* (L99A) Addgene 18476
T4 lysozyme mutant (S38D L99A M102Q N144D) Addgene 18477
Ampicillin sodium salt Sigma Aldrich A0166
isopropyl-β-D-1-thiogalactopyranoside (IPTG)  Invitrogen AM9464
Sodium phosphate monobasic  anhydrous Fisher BP329
Sodium Phosphate dibasic anhydrous Fisher BP332
Sodium chloride Fisher S642212 
Ethylenediaminetetraacetic acid Fisher BP118
Magnesium chloride Sigma Aldrich M4880 Corrosive
Thermo scientific pierce DNaseI Fisher PI-90083
GE Healthcare Sepharose Fast Flow Cation Exchange Media Fisher 45-002-931
Tris-base Fisher BP152-500 
Sodium azide TCI S0489 Highly toxic
2-Mercaptoethanol Fisher ICN806443 
Sartorius Vivaspin 20 Centrifugal Concentrators Fisher 14-558-501
Potassium phosphate monobasic Sigma Aldrich P5379
2-Hydroxyethyl disulfide Sigma Aldrich 380474
N-paratone  Hampton Research HR2-643
4 RC Dialysis Membrane Tubing 12,000 to 14,000 Dalton MWCO  Fisher 08-667E
 CryoLoop Hampton Research cryogenic tubing shaped into a loop
CryoTong Thermo Fisher cryogenic tong
Coot Electron density images are generated from the software

Referências

  1. Ducruix, A., Giége, R. . Crystallization of Nucleic Acids and Proteins, A Practical Approach. , (1992).
  2. Bosdet, M. J. D., Piers, W. E. B-N as a C-C substitute in aromatic systems. Can. J. Chem. 87 (1), 8-29 (2009).
  3. Campbell, P. G., Marwitz, A. J., Liu, S. -. Y. Recent Advances in Azaborine Chemistry. Angew. Chem. Int. Ed. 51 (25), 6074-6092 (2012).
  4. Wang, X. -. Y., Wang, J. -. Y., Pei, J. B. N. Heterosuperbenzenes: Synthesis and Properties. Chem. Eur. J. 21 (9), 3528-3539 (2015).
  5. Zhou, H. -. B., et al. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. Chem. Biol. 14 (6), 659-669 (2007).
  6. Ito, H., Yumura, K., Saigo, K. Synthesis, characterization, and binding property of isoelectronic analogues of nucleobases, B(6)-substituted 5-aza-6-borauracils and -thymines. Org. Lett. 12 (15), 3386-3389 (2010).
  7. Vlasceanu, A., Jessing, M., Kilburn, J. P. BN/CC isosterism in borazaronaphthalenes towards phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. 23 (15), 4453-4461 (2015).
  8. Rombouts, F. J., Tovar, F., Austin, N., Tresadern, G., Trabanco, A. A. Benzazaborinines as Novel Bioisosteric Replacements of Naphthalene: Propranolol as an Example. J. Med. Chem. 58 (23), 9287-9295 (2015).
  9. Culling, G. C., Dewar, M. J. S., Marr, P. A. New Heteroaromatic Compounds. XXIII. Two Analogs of Triphenylene and a Possible Route to Borazarene. J. Am. Chem. Soc. 86 (6), 1125-1127 (1964).
  10. White, D. G. 2-Phenyl-2,1-borazarene and Derivatives of 1,2-Azaboracycloalkanes. J. Am. Chem. Soc. 85 (22), 3634-3636 (1963).
  11. Ashe III, A. J., Fang, X. A Synthesis of Aromatic Five- and Six-Membered B−N Heterocycles via Ring Closing Metathesis. Org. Lett. 2 (14), 2089-2091 (2000).
  12. Marwitz, A. J. V., Matus, M. H., Zakharov, L. N., Dixon, D. A., Liu, S. -. Y. A Hybrid Organic/Inorganic Benzene. Angew. Chem. Int. Ed. 48 (5), 973-977 (2009).
  13. Abbey, E. R., Lamm, A. N., Baggett, A. W., Zakharov, L. N., Liu, S. -. Y. Protecting Group-Free Synthesis of 1,2-Azaborines: A Simple Approach to the Construction of BN-Benzenoids. J. Am. Chem. Soc. 135 (34), 12908-12913 (2013).
  14. Rudebusch, G. E., Zakharov, L. N., Liu, S. -. Y. Rhodium-catalyzed boron arylation of 1,2-azaborines. Angew. Chem. Int. Ed. 52 (35), 9316-9319 (2013).
  15. Brown, A. N., Li, B., Liu, S. -. Y. Negishi Cross-Coupling Is Compatible with a Reactive B-Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl. J. Am. Chem. Soc. 137 (28), 8932-8935 (2015).
  16. Knack, D. H. BN/CC Isosteric Compounds as Enzyme Inhibitors: N- and B-Ethyl-1,2-azaborine Inhibit Ethylbenzene Hydroxylation as Non-Convertible Substrate Analogs. Angew. Chem. Int. Ed. 52 (9), 2599-2601 (2013).
  17. Eriksson, A. E. Response of a Protein Structure to Cavity-Creating Mutations and Its Relation to the Hydrophobic Effect. Science. 255 (5041), 178-183 (1992).
  18. Eriksson, A. E., Baase, W. A., Wozniak, J. A., Matthews, B. W. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature. 355 (6358), 371-373 (1992).
  19. Morton, A., Baase, W. A., Matthews, B. W. Energetic Origins of Specificity of Ligand Binding in an Interior Nonpolar Cavity of T4 Lysozyme. Bioquímica. 34 (27), 8564-8575 (1995).
  20. Wei, B. Q., Baase, W. A., Weaver, L. H., Matthews, B. W., Shoichet, B. K. A Model Binding Site for Testing Scoring Functions in Molecular Docking. J. Mol. Biol. 322 (2), 339-355 (2002).
  21. Lee, H., Fischer, M., Shoichet, B. K., Liu, S. -. Y. Hydrogen Bonding of 1,2-Azaborines in the Binding Cavity of T4 Lysozyme Mutants: Structures and Thermodynamics. J. Am. Chem. Soc. 138 (37), 12021-12024 (2016).
  22. Brown, H. C., Racherla, U. S. Organoboranes. 43. A Convenient, Highly Efficient Synthesis of Triorganylboranes via a Modified Organometallic Route. J. Org. Chem. 51 (4), 427-432 (1986).
  23. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685 (1970).
  24. Liu, L., Baase, W. A., Matthews, B. W. Halogenated Benzenes Bound within a Non-polar Cavity in T4 Lysozyme Provide Examples of I.S and I.Se Halogen-bonding. J. Mol. Biol. 385 (2), 595-605 (2009).
check_url/pt/55154?article_type=t

Play Video

Citar este artigo
Lee, H., Liu, S. Synthesis of 1,2-Azaborines and the Preparation of Their Protein Complexes with T4 Lysozyme Mutants. J. Vis. Exp. (121), e55154, doi:10.3791/55154 (2017).

View Video