Summary

评估心肌亚型以下鼠标胚胎成纤维细胞的转录因子介导的重编程

Published: March 22, 2017
doi:

Summary

This manuscript describes a step-by-step protocol for the generation and quantification of diverse reprogrammed cardiac subtypes using a retrovirus-mediated delivery of Gata4, Hand2, Mef2c, and Tbx5.

Abstract

Direct reprogramming of one cell type into another has recently emerged as a powerful paradigm for regenerative medicine, disease modeling, and lineage specification. In particular, the conversion of fibroblasts into induced cardiomyocyte-like myocytes (iCLMs) by Gata4, Hand2, Mef2c, and Tbx5 (GHMT) represents an important avenue for generating de novo cardiac myocytes in vitro and in vivo. Recent evidence suggests that GHMT generates a greater diversity of cardiac subtypes than previously appreciated, thus underscoring the need for a systematic approach to conducting additional studies. Before direct reprogramming can be used as a therapeutic strategy, however, the mechanistic underpinnings of lineage conversion must be understood in detail to generate specific cardiac subtypes. Here we present a detailed protocol for generating iCLMs by GHMT-mediated reprogramming of mouse embryonic fibroblasts (MEFs).

We outline methods for MEF isolation, retroviral production, and MEF infection to accomplish efficient reprogramming. To determine the subtype identity of reprogrammed cells, we detail a step-by-step approach for performing immunocytochemistry on iCLMs using a defined set of compatible antibodies. Methods for confocal microscopy, identification, and quantification of iCLMs and individual atrial (iAM), ventricular (iVM), and pacemaker (iPM) subtypes are also presented. Finally, we discuss representative results of prototypical direct reprogramming experiments and highlight important technical aspects of our protocol to ensure efficient lineage conversion. Taken together, our optimized protocol should provide a stepwise approach for investigators to conduct meaningful cardiac reprogramming experiments that require identification of individual CM subtypes.

Introduction

心脏是在胚胎1,2,开发的第一个功能器官。与循环系统相结合,其提供氧,营养物,和开发过程中的废物处理机制。受精后三个星期,人的心脏跳动,第一次和适当的调整则是由心肌细胞(CMS)维护。因此,这些特殊细胞的不可逆损失是潜在的进行性心脏衰竭的根本问题。而一些生物如斑马鱼和爪蟾具有用于心脏再生的潜力,成年哺乳动物心脏较为有限3,5,6。因此,由于心脏的重要功能,是不令人吃惊的是心脏疾病是全世界死亡的首要原因,占仅7美国60万人死亡。该refore,基于细胞的疗法有效地修理或更换损伤心肌是伟大的具有临床意义。

山中和同事8的开创性的研究表明,四种转录因子的强制表达足以完全分化的成纤维细胞转化为多能干细胞。不过,所有的多能干细胞的策略的致瘤能力已在其用于治疗目的使用的一个关键问题。这促使科学领域寻找替代方法转分化的细胞,同时避免多能的阶段。最近,一些团体已经通过与转录异位表达显示小鼠成纤维细胞直接转化为诱导的心肌样细胞(iCLMs)显示了这一战略的可行性因素GATA4,MEF2C,Tbx5中,后来,HAND2(GMT和GHMT分别)9,10。 Furthermore,同样的策略可以在体内和人衍生的组织9,11,12来进行。最近的研究已强调了额外的因素或可被调制以进一步改善心脏重编程效率13,14,15的信号通路。总之,这些研究表明定向转分化为再生疗法的潜力。然而,CM重新编程,未知的分子机制,重复性不一致由于方法上的差异16低效率,iCLMs的异质性仍未得到解决。

为了直接评价iCLM异质性,我们设计了一个离散的和强大的单细胞测定为肌节发展和心脏谱系specificatio的识别正两个功能的心肌细胞的必要特征。存在由它们的位置和独特的电特性定义在心脏的至少三个主要类型的CM:心房(AM),心室(VM)和起搏器(PM)17,18,19,20。在一个精心策划的组合,他们让血液正常抽水。在心脏损伤,一个或所有亚型可能会受到影响,细胞治疗的类型,需要根据具体情况逐案予以解决。目前,大多数战略,注重整体代心肌细胞,而少量的工作正在做研究,调节亚型规范的分子机制。

下面详细研究如何正确量化井井有条肌节,并确定一组不同的亚型心肌的。使用心脏起搏器(PM)专用鼠标的记者,我们可以申请一个我mmunocytochemical方法来区分诱发房状细胞(IAM),诱发室状细胞(IVM),并诱导般的PM肌细胞(IPMS)21。根据我们的观察,只表现出肌组织细胞能够自发跳动。这种独特的重新编程平台可以评估的作用 在肌组织,子规范,CM重编程效率的某些参数在单细胞分辨率。

Protocol

涉及动物的做法,所有的实验程序进行的机构动物护理和使用委员会在UT西南医疗中心的批准。 1.隔离HCN4-GFP E12.5小鼠胚胎成纤维细胞(MEF中) 建立纯合子HCN4-GFP男性和CD-1雌性间定时交配。 在二氧化碳安乐死和随后的颈椎脱位E12.5牺牲怀孕的女性。 与解剖钳除去子宫角,如前所述22,23,并将其放置在不含Ca …

Representative Results

服用特定的PM记者鼠标的优势,我们开发了多重免疫策略,确定为如图1所示多样化的内源性肌细胞。以下在图2所示的重新编程的步骤,亚型特异性的CM的诱导可以早在4第21天虽然是在低速率检测。在第14天,在实验可以停止并评估肌组织( 图3)和亚型规范( 图4)。 图5总结玻片制备的用于I…

Discussion

本研究通过心脏转录的逆转录病毒介导的表达提供的MEF转换的直接重新编程战略转化为一组不同的亚型心脏因素GATA4,MEF2C,Tbx5中,和HAND2(GHMT)。在使用具有特定的PM记者鼠标组合多重染色的方法,我们能够确定(IAM),网络视频监控软件,并在IPMS单细胞分辨率。这种试验可以隔离能力个别转录因子对亚型多样性和肌节发展的贡献的体外系统的实验研究。与此同时,这可能会带?…

Declarações

The authors have nothing to disclose.

Acknowledgements

A.F.-P. was supported by the National Science Foundation Graduate Research Fellowship under Grant No.2015165336. N.V.M was supported by grants from the NIH (HL094699), Burroughs Wellcome Fund (1009838), and the March of Dimes (#5-FY14-203). We acknowledge Young-Jae Nam, Christina Lubczyk, and Minoti Bhakta for their important contributions to protocol development and data analysis. We also thank John Shelton for valuable technical input and members of the Munshi lab for scientific discussion.

Materials

DMEM Sigma D5796 Component of iCLM media, Plat-E media, fibroblast, and Transfection media
Medium 199 Thermo Fisher Scientific 11150059 Component of iCLM media
Fetal bovine serrum (FBS) Sigma F2442 Component of iCLM media, Plat-E media, fibroblast, and Transfection media
Insulin-Transferrin-Selenium G Thermo Fisher Scientific 41400-045 Component of iCLM media
MEM vitamin solution Thermo Fisher Scientific 11120-052 Component of iCLM media
MEM amino acids Thermo Fisher Scientific 1601149 Component of iCLM media
Non-Essential amino acids Thermo Fisher Scientific 11140-050 Component of iCLM media
Antibiotic-Antimycotics Thermo Fisher Scientific 15240062 Component of iCLM media
B-27 supplement Thermo Fisher Scientific 17504044 Component of iCLM media
Heat-Inactivated Horse Serum Thermo Fisher Scientific 26050-088 Component of iCLM media
NaPyruvate Thermo Fisher Scientific 11360-70 Component of iCLM media
Penicillin/Streptomycin Thermo Fisher Scientific 1514022 Component of Plat-E media and fibroblast media
Puromycin  Thermo Fisher Scientific A11139-03 Component of Plat-E media
Blasticidin   Gemini Bio-Products 400-128P Component of Plat-E media
Glutamax Thermo Fisher Scientific 35050-061 Component of Fibroblast media
Confocal laser scanning LSM700 Zeiss For confocal analysis
FuGENE 6 transfection Reagent Promega E2692 Transfection reagent 
Opti-MEM Reduced Serum Medium Thermo Fisher Scientific 31985-070 Transfection reagent 
Polybrene Millipore TR-1003-G Induction reagent. Use at a final concentration of 8um/mL
Platinium-E (PE) Retroviral Packagin Cell Line, Ecotropic CellBiolabs RV-101 Retroviral pacaking cell line
Trypsin 0.25% EDTA Thermo Fisher Scientific For MEFs and Plat-E dissociation
Mouse anti α-Actinin (Clone EA-53) Sigma A7811 Antibody for confocal analysis. Use at 1:200
Chicken anti-GFP IgY Thermo Fisher Scientific A10262 Antibody for confocal analysis. Use at 1:200
Rabbit Pab anti-NPPA  Abgent AP8534A Antibody for confocal analysis. Use at 1:400
Rabbit Pab anti Myl2 IgG  ProteinTech 10906-1-AP Antibody for confocal analysis. Use at 1:200
Vectashield solution with DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Vector Labs H-1500 Dye for confocal analysis
Superfrost Plus Microscope slides Thermo Fisher Scientific 12-550-15 25 x 75 x 1.0 mm
BioCoat Fibronectin 12mm coverslips NeuVitro Corp GG-12-1.5 Coverslips for confocal analysis
100um cell strainer Thermo Fisher Scientific 08-771-19
0.45um Syringes filters SFCA 25MM Thermo Fisher Scientific 09-740-106 For virus filtration
6ml Syringes Covidien 8881516937 For virus filtration
Goat anti-Chicken IgY (H&L) A488 Abcam AB150169 Secondary antibody for confocal analysis. Use at 1:400
Donkey anti-rabbit A647 IgG(H+L)  Thermo Fisher Scientific A31573 Secondary antibody for confocal analysis. Use at 1:400
Goat anti-mouse IgG(H+L) A555 Thermo Fisher Scientific A21422 Secondary antibody for confocal analysis. Use at 1:400
Triton X-100 Sigma 93443-100ml For cell permeabilization 
Dulbecco's PBS without CaCl2 and MgCl2 (D-PBS) Sigma D8537
Power Block 10X Universal Blocking reagent Thermo Fisher Scientific NC9495720 Dilute to 1X in H20
16% Paraformaldehyde aqueous solution (PFA) Electro Microscopy Sciences  15710 Use at 4% diluted in dH20
6 cm  plates Olympus 25-260
6-well plates Genesee Scientific 25-105
24-well plates Genesee Scientific 25-107
10 cm Tissue culture dishes Corning 4239
15 cm  Tissue culture dishes Thermo Fisher Scientific 5442
15 ml Conical tubes Corning 4308
50 ml Conical tubes Corning 4249
0.4% Trypan blue solution Sigma T8154 For viability
Ethyl Alcohol 200 proof Thermo Fisher Scientific 7005
Bleach Thermo Fisher Scientific 6009

Referências

  1. Sissman, N. J. Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol. 25 (2), 141-148 (1970).
  2. Buckingham, M., Meilhac, S., Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 6 (11), 826-835 (2005).
  3. Ali, S. R., et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A. 111 (24), 8850-8855 (2014).
  4. Bergmann, O., et al. Evidence for cardiomyocyte renewal in humans. Science. 324 (5923), 98-102 (2009).
  5. Senyo, S. E., et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 493 (7432), 433-436 (2013).
  6. Lin, Z., Pu, W. T. Strategies for cardiac regeneration and repair. Sci Transl Med. 6 (239), 239rv231 (2014).
  7. Writing Group, M., et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 133 (4), e38-e360 (2016).
  8. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  9. Song, K., et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 485 (7400), 599-604 (2012).
  10. Ieda, M., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 142 (3), 375-386 (2010).
  11. Qian, L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 485 (7400), 593-598 (2012).
  12. Fu, J. D., et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports. 1 (3), 235-247 (2013).
  13. Zhou, H., Dickson, M. E., Kim, M. S., Bassel-Duby, R., Olson, E. N. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc Natl Acad Sci U S A. 112 (38), 11864-11869 (2015).
  14. Zhou, Y., et al. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell. 18 (3), 382-395 (2016).
  15. Zhao, Y., et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 6, 8243 (2015).
  16. Miki, K., Yoshida, Y., Yamanaka, S. Making steady progress on direct cardiac reprogramming toward clinical application. Circ Res. 113 (1), 13-15 (2013).
  17. Atkinson, A., et al. Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. J Mol Cell Cardiol. 51 (5), 689-701 (2011).
  18. Bootman, M. D., Smyrnias, I., Thul, R., Coombes, S., Roderick, H. L. Atrial cardiomyocyte calcium signalling. Biochim Biophys Acta. 1813 (5), 922-934 (2011).
  19. Miquerol, L., Beyer, S., Kelly, R. G. Establishment of the mouse ventricular conduction system. Cardiovasc Res. 91 (2), 232-242 (2011).
  20. Später, D., Hansson, E. M., Zangi, L., Chien, K. R. How to make a cardiomyocyte. Development. 141 (23), 4418-4431 (2014).
  21. Nam, Y. J., et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development. 141 (22), 4267-4278 (2014).
  22. Conner, D. A. . Current Protocols in Molecular Biology. , (2001).
  23. Jozefczuk, J., Drews, K., Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. (64), (2012).
  24. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., Yee, J. K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A. 90 (17), 8033-8037 (1993).
  25. Ichim, C. V., Wells, R. A. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation. J Transl Med. 9, 137 (2011).
  26. Qian, L., Berry, E. C., Fu, J. D., Ieda, M., Srivastava, D. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc. 8 (6), 1204-1215 (2013).
  27. Yang, R., et al. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat Commun. 5, 5807 (2014).
  28. Muraoka, N., Ieda, M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis. Annu Rev Physiol. 76, 21-37 (2014).
  29. Coffin, J. M., Hughes, S. H., Varmus, H. E., Coffin, J. M., Hughes, S. H., Varmus, H. E. . Retroviruses. , (1997).
  30. Bass, G. T., et al. Automated image analysis identifies signaling pathways regulating distinct signatures of cardiac myocyte hypertrophy. J Mol Cell Cardiol. 52 (5), 923-930 (2012).
check_url/pt/55456?article_type=t

Play Video

Citar este artigo
Fernandez-Perez, A., Munshi, N. V. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts. J. Vis. Exp. (121), e55456, doi:10.3791/55456 (2017).

View Video