Summary

Biodegradable Magnesium Stent Treatment of Saccular Aneurysms in a Rat Model - Introduction of the Surgical Technique

Published: October 01, 2017
doi:

Summary

Reproducable experimental animal models are needed for the testing of novel embolization materials, which have been designed to treat endovascular occlusion of intracranial aneurysms (IA). The present study aims to develop a safe and standardized surgical technique for stent assisted embolization of saccular aneurysms in a rat animal model.

Abstract

The steady progess in the armamentarium of techniques available for endovascular treatment of intracranial aneurysms requires affordable and reproducable experimental animal models to test novel embolization materials such as stents and flow diverters. The aim of the present project was to design a safe, fast, and standardized surgical technique for stent assisted embolization of saccular aneurysms in a rat animal model.

Saccular aneurysms were created from an arterial graft from the descending aorta.The aneurysms were microsurgically transplanted through end-to-side anastomosis to the infrarenal abdominal aorta of a syngenic male Wistar rat weighing >500 g. Following aneurysm anastomosis, aneurysm embolization was performed using balloon expandable magnesium stents (2.5 mm x 6 mm). The stent system was retrograde introduced from the lower abdominal aorta using a modified Seldinger technique.

Following a pilot series of 6 animals, a total of 67 rats were operated according to established standard operating procedures. Mean surgery time, mean anastomosis time, and mean suturing time of the artery puncture site were 167 ± 22 min, 26 ± 6 min and 11 ± 5 min, respectively. The mortality rate was 6% (n=4). The morbidity rate was 7.5% (n=5), and in-stent thrombosis was found in 4 cases (n=2 early, n=2 late in stent thrombosis).

The results demonstrate the feasibility of standardized stent occlusion of saccular sidewall aneurysms in rats – with low rates of morbidity and mortality. This stent embolization procedure combines the opportunity to study novel concepts of stent or flow diverter based devices as well as the molecular aspects of healing.

Introduction

Subarachnoid hemorrhage due to a ruptured intracranial aneurysm is associated with a high mortality rate and poor neurological outcome in many survivors. There are currently two general approaches to occlude IA: either microsurgical clipping (which requires operative exposure of the aneurysm), or endovascular occlusion. As the less invasive endovascular coil treatment of narrow-necked IA has been shown to be associated with slightly lower morbidity (especially in the posterior circulation1,2), endovascular treatment options have become the preferred modality of many neurosurgical centers. Numerous devices have been developed in order to extend the indications of endovascular treatment and overcome the main limitation of IA recurrence after coiling. Intracranial stents are especially promising to overcome these limitations, as they serve as a scaffold for neo-endothelization and coil herniation prevention, as well as protect the parent artery and improve intraluminal intraaneurysmal thrombosis caused by reduction of blood inflow. There is a need to study novel intracranial stents in a low cost animal model; at both macroscopic and molecular levels.

The aim of this study was to design a safe, fast, and standardized surgical technique for stent application in an already established saccular aneurysm model in rats3,4,5. In the present project, we evaluated the role of a biodegradable magnesium stent.

Protocol

Male Wistar rats with a mean weight of 592 g (±50 SD) and mean age of 20 weeks were housed in animal facilities at a room temperature of 22-24 °C and twelve hour light/dark cycle, with free access to tap water and a pellet diet. The animals received care from humans in accordance with institutional guidelines. The experiments were approved by the Committee for Animal Care of the Canton Bern, Switzerland (BE 102/13). We strictly followed the recommendations for Animal Research: Reporting of In Vivo Expe…

Representative Results

The average duration of surgery was 167 (± 22) min, 26 (± 6) min of which were needed for aneurysm creation and a further 23 (± 7) min required for stent application and reconstruction of the arteriotomy (Figure 3). Mortality, morbidity, and macroscopic in-stent thrombosis were the primary endpoints of the study. The regular follow-up periods were 7 days (n=28), and 21 days (n=32) res…

Discussion

Bioabsorbable stents and animal models
In recent years the general trend in medicine has been away from permanent implants (which remain in the patient's body for the rest of their life) to bio-absorbable materials. Magnesium stents, in particular, are already quite established in cardiology8,9. Unfortunately these stents have not yet been tested for other applications, such as cerebrovascular diseases. For this reason we decided to stu…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Eugen Hofmann and Philine Zumstein for their excellent technical assistance and for sharing their expertise in stent application procedures. We thank Majlinda Kalanderi for the anatomical drawing.

Materials

Medetomidine any generic
Ketamin any generic
Buprenorphine any generic
Phosphate buffered saline
Sodium dodecyl sulfate (0.1%)
3-0 resorbable suture Ethicon Inc., USA VCP428G
5-0 non absorbable suture Ethicon Inc., USA 8618G
6-0 non-absorbable suture B. Braun, Germany C0766070
9-0 non-absorbable suture B. Braun, Germany G1111140
10-0 non-absorbable suture Covidien, USA N2530 Monosof
Operation microscope Zeiss, Germany
Digital microscope camera Sony, Japan HXR-MC1P
Standard surgical instruments multiple see protocol 7.a
Microsurgical instruments multiple see protocol 7.b
Vascular clip applicator B. Braun, Germany FT495T
Temporary vascular clamps B. Braun, Germany
19G Puncture needle  Angiomed GmbH, Germany 15820010
Hydrophobic guide wire Cook Medical, USA G00650
4F sheat Cordis Corporation, USA 504-604A
Inflation syringe
Laboratory shaker Stuart SRT6
Magnesium Stent 2.5/6 AMS with Polymer coating Biotronik, Switzerland
Surgery drape 
Sterile cellulose swabs
Syringes 1 ml and 2 ml
Hollow needles 18G and 26G
Isotonic sodium chloride
Microtubes
Eye ointment Bausch + Lomb Inc, USA Lacrinorm any generic
Small animal shaver

Referências

  1. Molyneux, A., et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 360 (9342), 1267-1274 (2002).
  2. Molyneux, A. J., et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 366 (9488), 809-817 (2005).
  3. Marbacher, S., et al. Intraluminal cell transplantation prevents growth and rupture in a model of rupture-prone saccular aneurysms. Stroke. 45 (12), 3684-3690 (2014).
  4. Marbacher, S., Marjamaa, J., Abdelhameed, E., Hernesniemi, J., Niemela, M., Frosen, J. The Helsinki rat microsurgical sidewall aneurysm model. J Vis Exp. (92), e51071 (2014).
  5. Marbacher, S., et al. Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke. 45 (1), 248-254 (2014).
  6. Pritchett-Corning, K. R., Luo, Y., Mulder, G. B., White, W. J. Principles of rodent surgery for the new surgeon. J Vis Exp. (47), (2011).
  7. Bernal, J., et al. Guidelines for rodent survival surgery. J Invest Surg. 22 (6), 445-451 (2009).
  8. Flege, C., et al. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. J Mater Sci Mater Med. 24 (1), 241-255 (2013).
  9. Zartner, P., Cesnjevar, R., Singer, H., Weyand, M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv. 66 (4), 590-594 (2005).
  10. Hakamata, Y., et al. Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem Biophys Res Commun. 286 (4), 779-785 (2001).
  11. Bouzeghrane, F., Naggara, O., Kallmes, D. F., Berenstein, A., Raymond, J. International Consortium of Neuroendovascular C. In vivo experimental intracranial aneurysm models: a systematic review. AJNR Am J Neuroradiol. 31 (3), 418-423 (2010).
  12. Aquarius, R., Smits, D., Gounis, M. J., Leenders, W. P., De Vries, J. Flow diverter implantation in a rat model of sidewall aneurysm: a feasibility study. J Neurointerv Surg. , (2017).
  13. Indolfi, C., et al. A new rat model of small vessel stenting. Basic Res Cardiol. 95 (3), 179-185 (2000).
  14. Oyamada, S., et al. Trans-iliac rat aorta stenting: a novel high throughput preclinical stent model for restenosis and thrombosis. J Surg Res. 166 (1), e91-e95 (2011).
  15. Kwon, J. S., et al. Comparison of bare metal stent and paclitaxel-eluting stent using a novel rat aorta stent model. J Vet Sci. 12 (2), 143-149 (2011).
  16. Rouer, M., Meilhac, O., Delbosc, S., et al. A new murine model of endovascular aortic aneurysm repair. J Vis Exp. (77), e50740 (2013).
  17. Hardhammar, P. A., et al. Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries. Circulation. 93 (3), 423-430 (1996).
  18. Guerrero, A., et al. Antioxidant effects of a single dose of acetylsalicylic acid and salicylic acid in rat brain slices subjected to oxygen-glucose deprivation in relation with its antiplatelet effect. Neurosci Lett. 358 (3), 153-156 (2004).
  19. Niitsu, Y., et al. Repeat oral dosing of prasugrel, a novel P2Y12 receptor inhibitor, results in cumulative and potent antiplatelet and antithrombotic activity in several animal species. Eur J Pharmacol. 579 (1-3), 276-282 (2008).
  20. Kastrati, A., et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 103 (23), 2816-2821 (2001).
  21. Lowe, H. C., James, B., Khachigian, L. M. A novel model of in-stent restenosis: rat aortic stenting. Heart. 91 (3), 393-395 (2005).
  22. Finn, A. V., et al. A novel rat model of carotid artery stenting for the understanding of restenosis in metabolic diseases. J Vasc Res. 39 (5), 414-425 (2002).
check_url/pt/56359?article_type=t

Play Video

Citar este artigo
Nevzati, E., Rey, J., Coluccia, D., D’Alonzo, D., Grüter, B., Remonda, L., Fandino, J., Marbacher, S. Biodegradable Magnesium Stent Treatment of Saccular Aneurysms in a Rat Model – Introduction of the Surgical Technique. J. Vis. Exp. (128), e56359, doi:10.3791/56359 (2017).

View Video