Summary

细胞培养和果蝇黑色素的氧化锌纳米颗粒的毒性研究

Published: September 19, 2019
doi:

Summary

我们描述了一个详细的方案,用于评估氧化锌纳米粒子(ZnO NPs)的毒理学特征,特别是人类MRC5肺成纤维细胞中的细胞死亡类型和果蝇果蝇果蝇的ROS形成。

Abstract

氧化锌纳米颗粒 (ZnO NPs) 的应用范围很广,但近年来有关 ZnO NP 相关毒性的报告数量迅速增加。然而,阐明ZnO NP诱导毒性的基本机制的研究很少。我们使用体外实验模型和体内实验模型确定了ZnO NPs的毒性曲线。在ZnO NP暴露的MRC5肺成纤维细胞中观察到细胞活力显著下降,表明ZnO Npps具有细胞毒性作用。同样,有趣的是,暴露于ZnO NPs的肠道在果蝇果蝇果蝇中表现出活性氧物种水平(ROS)的显著增加。需要进行更深入的研究,以便对消费者增加使用 ZnO NPs 进行风险评估。

Introduction

纳米技术是指纳米材料的应用,用于所有科学领域,包括医学、材料科学和生物化学。例如,以紫外线散射、化学传感、抗微生物特性以及高导电性著称的ZnO NPs被用于各种消费品的生产,如食品包装、化妆品、纺织品、橡胶、电池、汽车尾气处理催化剂以及生物医学相关应用1、2、3。

然而,基于ZnO NP的产品的迅速应用,导致人类接触ZnO NP的机会增加,这引起了人们对其对人类健康的潜在不利影响的关注。一些体外细胞研究表明,ZnO NPs可以诱导氧化应激、自噬相关细胞毒性、炎症和基因毒性4,5,6,7,8.值得注意的是,ZnO NPs的毒性被假定为由Zn溶解以释放Zn2+离子引起的,以及ZnO的表面反应性,导致细胞离子和代谢失衡,这些失衡与受损的离子平衡和抑制的子运输4,7,9,10。重要的是,研究表明,活性氧物种(ROS)的产生是ZnO NPs相关毒性的主要机制之一。ROS侮辱后抗氧化活性不足已被证明是导致细胞毒性和DNA损伤的原因9。在动物模型中也报告了ZnO NPs的毒性作用,包括啮齿动物1,斑马鱼11,12,以及无脊椎动物果蝇13。

果蝇是化学实体和纳米材料(NMs)14、15毒性筛选的成熟替代动物模型。重要的是,人类和果蝇之间有着高度的遗传和生理相似性,这证明使用果蝇作为体内模型来评估对环境污染物(如NMs)的生物反应。16.此外,由于果蝇体积小、寿命短、遗传性、易于操作、易于和具有成本效益的维护,使用果蝇有许多优点。此外,自2000年全基因组完全测序以来,果蝇被广泛用于遗传学、分子和发育生物学的研究,因此适合各种高通量筛选以及解决未解决的生物问题17,18,19,20,21。近年来,在果蝇中,有15、22、23、24号研究与使用不同类型核对素的免疫毒性有关。从使用果蝇的研究中获得的这些基本的新知识有助于深入了解我们对纳米毒理学的理解。

ROS是NPs引起的细胞毒性和基因毒性的众所周知的罪魁祸首,特别是基于金属的NPs25。ROS是含氧化学物种,具有比分子氧更高的活性。自由基,如超氧化物基(O2-),甚至非基分子,如过氧化氢(H2 O2)可以充当ROS。在正常生理条件下,它们需要维持细胞平衡26,然而,过量的ROS由于过量生产或抗氧化防御系统调节可能导致氧化应激,导致蛋白质损伤,脂质和脱氧核糖核酸(DNA)27。例如,随着ROS水平增加和谷胱甘肽(GSH)水平同时下降,三磷酸腺苷(ATP)合成发生中断,乳酸脱氢酶(LDH)水平增加,最终导致细胞死亡27

在这里,我们提供使用培养的哺乳动物细胞和果蝇细胞进行细胞和遗传分析的协议,以确定ZnO NPs的潜在不利影响。图1概述了用于ZnO NPs毒性研究的方法。

Protocol

1. 荧光活细胞分类 (FACS) 活细胞/固定细胞分析 声波 ZnO NP 在悬浮 15 分钟。 使用1mg/mL ZnO NP库存溶液制备不同浓度的ZnO NP(例如0、10、25、50、100和200微克/mL),用于处理培养细胞。 种子MRC5人类肺成纤维细胞(1 x 105细胞/孔)提前一天进入6孔培养板,然后用2 mL的ZnO NPs(三胞胎)处理细胞8小时、16小时和24小时。 在每个时间点,通过300 x g离心收集细胞…

Representative Results

NP暴露的细胞使用细胞染色试剂试剂盒进行处理,然后使用流式细胞测定法对细胞进行分类。ZnO NP处理的细胞(底部,右侧面板)表现出比对照细胞(R5,底部,左侧面板)更高的早期(R3)/晚期凋亡细胞(R6)的百分比。坏死细胞死亡用R4(顶部,右侧面板)表示(图2)。图2显示了FITC/附件五对ZnO NP处理的MRC-5成纤维细胞的测?…

Discussion

为了评估ZnO NP是否可诱导MRC5成纤维细胞凋亡,我们使用流式细胞测定法来区分细胞与坏死或凋亡细胞死亡。在正常活细胞中,磷脂酰丝氨酸(PS)在细胞膜处局部化。如果发生凋亡,PS被转移至血浆膜的细胞外传单,允许用荧光素标记的附件五(FITC附件五)29。另一方面,红荧光丙二蛋白(PI),一种核酸结合染料,对活细胞和凋亡细胞是无害的,但污渍死细胞30。<…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了补助金编号R706-000-043-490的支持。这项研究并不代表赠款发起人的观点。

Materials

15% Methyl 4-Hydroxybenzoate Sigma Aldrich
4% Paraformaldehyde Sigma Aldrich P6148
Bacto Agar BD biosciences
cncCK6/TM3, Sb a gift from Dr. Kerppola T
cornmeal, glucose, yeast brewer Sigma Aldrich
CyAn ADP with Summit Software DAKO https://flow.usc.edu/files/2014/07/BC-Cyan-ADP-User-Guide-2016.pdf
Dihydroethidium (Hydroethidine) Thermo Fisher Scientific D11347
FITC Annexin V Apoptosis Detection Kit I BD biosciences 556547
Fluorescent microscope Olympus
Glucolin Supermarket
Image J software NIH
MRC5 human lung fibroblast ATCC CCL-171
Schneider’s Drosophila medium Thermo Fisher Scientific 21720-024
vectashield antifade mounting medium with DAPI Vector Laboratories H-1200
wild- type Canton-S; Sod2N308/CyO NIG-FLY
Zinc Oxide Nanoparticles Sigma Aldrich 721077 Refer Sheet 2

Referências

  1. Kim, Y. R., et al. Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. International Journal of Nanomedicine. 9 Suppl 2, 109-126 (2014).
  2. Xie, Y., He, Y., Irwin, P. L., Jin, T., Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology. 77, 2325-2331 (2011).
  3. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nature Biotechnology. 21, 1166-1170 (2003).
  4. De Angelis, I., et al. Comparative study of ZnO and TiO(2) nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology. 7, 1361-1372 (2013).
  5. Johnson, B. M., et al. Acute exposure to ZnO nanoparticles induces autophagic immune cell death. Nanotoxicology. 9, 737-748 (2015).
  6. Singh, N., et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 30, 3891-3914 (2009).
  7. Song, W., et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters. 199, 389-397 (2010).
  8. Wahab, R., et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and Surfaces B: Biointerfaces. 117, 267-276 (2014).
  9. Namvar, F., et al. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evidence-Based Complementary and Alternative. 2015, (2015).
  10. Wong, S. W., Leung, P. T., Djurisic, A. B., Leung, K. M. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry. 396, 609-618 (2010).
  11. Hua, J., Vijver, M. G., Richardson, M. K., Ahmad, F., Peijnenburg, W. J. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environmental Toxicology and Chemistry. 33, 2859-2868 (2014).
  12. Zhao, X., Wang, S., Wu, Y., You, H., Lv, L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology. 136-137, 49-59 (2013).
  13. Alaraby, M., Annangi, B., Hernandez, A., Creus, A., Marcos, R. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. Journal of Hazardous Materials. 296, 166-174 (2015).
  14. Rand, M. D. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicology and Teratology. 32, 74-83 (2010).
  15. Ong, C., Yung, L. Y., Cai, Y., Bay, B. H., Baeg, G. H. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology. 9, 396-403 (2015).
  16. Hoffmann, J. A., Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunology. 3, 121-126 (2002).
  17. Hughes, T. T., et al. Drosophila as a genetic model for studying pathogenic human viruses. Virology. 423, 1-5 (2012).
  18. Jennings, B. H. Drosophila – a versatile model in biology & medicine. Materials Today. 14, 190-195 (2011).
  19. Adams, M. D., Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Reviews Genetics. 3, 189-198 (2002).
  20. Adams, M. D., et al. The genome sequence of Drosophila melanogaster. Science. 287, 2185-2195 (2000).
  21. Ong, C., et al. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Scientific Reports. 6, (2016).
  22. Alaraby, M., Demir, E., Hernandez, A., Marcos, R. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. Science of the Total Environment. 530-531, 66-75 (2015).
  23. Barik, B. K., Mishra, M. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology. , 1-27 (2018).
  24. Jovanovic, B., et al. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster – a 20 generation dietary exposure experiment. Scientific Reports. 8, (2018).
  25. Cao, Y. The Toxicity of Nanoparticles to Human Endothelial Cells. Advances in Experimental Medicine and Biology. 1048, 59-69 (2018).
  26. Akhtar, M. J., Ahamed, M., Alhadlaq, H. A., Alshamsan, A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochimica Et Biophysica Acta-General Subjects. 1861, 802-813 (2017).
  27. Akter, M., et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research. 9, 1-16 (2018).
  28. Vecchio, G. A fruit fly in the nanoworld: once again Drosophila contributes to environment and human health. Nanotoxicology. 9, 135-137 (2015).
  29. Marino, G., Kroemer, G. Mechanisms of apoptotic phosphatidylserine exposure. Cell Research. 23, 1247-1248 (2013).
  30. Stoddart, M. J. Cell Viability Assays: Introduction. Mammalian Cell Viability: Methods and Protocols. , (2011).
  31. Yazdani, M. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro. Toxicology in Vitro. 30, 578-582 (2015).
  32. Chen, J., Rogers, S. C., Kavdia, M. Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay. Annals of Biomedical Engineering. 41, 327-337 (2013).
  33. Hartig, S. M. Basic image analysis and manipulation in ImageJ. Current Protocols in Molecular Biology. , (2013).
check_url/pt/59510?article_type=t

Play Video

Citar este artigo
Ng, C. T., Ong, C. N., Yu, L. E., Bay, B. H., Baeg, G. H. Toxicity Study of Zinc Oxide Nanoparticles in Cell Culture and in Drosophila melanogaster. J. Vis. Exp. (151), e59510, doi:10.3791/59510 (2019).

View Video