Summary

使用氟磷钙标签和纳米粒子跟踪分析估计人类泌尿纳米晶体

Published: February 09, 2021
doi:

Summary

这项研究的目的是确定纳米粒子跟踪分析(NTA)能否检测和量化含有健康成年人纳米晶体的尿钙。目前的研究结果表明,NTA可能是估计肾结石疾病期间泌尿纳米晶体的潜在工具。

Abstract

肾结石在全世界成人和儿童中越来越普遍。最常见的肾结石类型由草酸钙(CaOx)晶体组成。当尿液中富含矿物质(如钙、草酸盐、磷酸盐)并形成肾结石之前时,就会发生结晶。评估石器晶体的标准方法包括显微镜、过滤和离心。然而,这些方法主要检测微晶体,而不是纳米晶体。纳米晶体被建议对肾脏上皮细胞的危害大于体外微晶体。在这里,我们描述了纳米粒子跟踪分析(NTA)检测人类泌尿纳米晶体的能力。健康成年人在饮用草酸盐负荷以刺激泌尿纳米晶体之前,先吃受控的草酸盐饮食。尿在草酸盐负荷前后收集了24小时。用乙醇加工和清洗样品以净化样品。泌尿纳米晶体沾染了钙结合氟磷,氟-4 AM。染色后,使用 NTA 确定纳米晶体的大小和计数。这项研究的结果表明,NTA可以有效地检测健康成年人的纳米晶体。这些发现表明,NTA可能是肾结石患者纳米晶体的有价值的早期检测方法。

Introduction

当尿液中富含矿物质时,尿晶体就会形成。这可能发生在健康的人,但更常见的个人肾结石1。泌尿晶体的存在和积累会增加患肾结石的风险。具体来说,当晶体与兰德尔的斑块结合,核化,积累,并随着时间的推移生长2,3,4就会发生这种情况。晶体在肾结石形成之前和晶体的评估可能具有预测价值的肾结石前3,5。具体来说,结晶体已被建议有用,以预测在含有结石6,7的草酸钙病史患者的结石复发的风险。

据报道,晶体对肾上皮和循环免疫细胞功能8、9、10、11、12、13产生负面影响。此前有报道称,与健康个体相比,从草酸钙(CaOx)肾结石前体中循环的单核细胞抑制了细胞生物能学。此外,CaOx晶体可减少细胞生物能学,并破坏单核细胞8中的红氧平衡。食用富含草酸盐的膳食可能导致结晶体,导致肾管损伤,并改变保护肾结石形成尿大分子的生产和功能。多项研究已证明,尿晶体的形状和大小可能因尿液17、18、19的pH值和温度而异。此外,尿蛋白已被证明可以调节晶体行为20。道登等人19日提出,结晶体分析可能有助于肾结石病患者的管理,并评估他们对治疗的反应。目前可用于评估晶体存在的一些常规方法包括极化显微镜21、22、电子显微镜23、粒子计数器3、尿液过滤24、蒸发3、5或离心21。这些研究为肾结石领域提供了宝贵的见解。然而,这些方法的局限性是无法可视化和量化大小小于 1μm 的晶体。这种大小的晶体可能通过附着在兰德尔的斑块上来影响CaOx石的生长。

与较大的微晶体25相比,纳米晶体已证明对肾脏细胞造成广泛损伤。纳米晶体的存在已经报告在尿液中使用纳米粒子分析仪26,27。最近的研究已经使用荧光标记的双磷酸盐探针(亚龙-氟辛/阿伦德龙酸盐-Cy5)来检查纳米晶体使用纳米级流细胞测量28。这种染料的限制是,它不是具体的,将结合几乎所有类型的石头,除了半胱氨酸。因此,准确评估个体中纳米晶体的存在可能是诊断结晶体和/或预测结石风险的有效工具。本研究的目的是利用纳米粒子跟踪分析(NTA)检测和量化含有纳米晶体的钙(大小为 <1微米)。为此,NTA 技术与含钙氟磷、氟-4 AM 相结合,用于检测和量化健康成年人尿液中含有纳米晶体的钙。

Protocol

这项工作中概述的所有实验都得到了阿拉巴马大学伯明翰分校(UAB)机构审查委员会的批准。健康成人(33.6±3.3岁;n=10)如果有正常的血液综合代谢板,非烟草使用者,非怀孕,体重指数在20-30公斤/米2之间,并且没有慢性疾病或急性疾病,则报名参加研究。健康参与者在研究开始前签署了书面知情同意书。 1. 临床协议和尿液收集 让参与者在收集尿液(24 小时?…

Representative Results

这项研究的结果表明,NTA可以有效地检测人类尿液中含有尿纳米晶体的钙的平均大小和浓度。这是通过使用氟磷、氟-4 AM 和纳米粒子跟踪分析实现的。Fluo-4 AM 能够与 CaOx 和 CaP 晶体结合。如图3A所示,CaOx晶体的大小确定在50-270纳米之间,平均浓度为1.26 x 109颗粒/mL。CaP晶体的大小在30-225纳米之间,平均浓度为2.22×109粒子/mL(图3B)。为了…

Discussion

NTA在本研究中使用钙结合探针Flo-4 AM来评估人类尿液中的纳米晶体。没有标准方法可以检测尿液中的纳米晶体。一些研究小组已经检测出尿液中的纳米晶体,并依靠使用广泛的协议或方法,这些协议或方法限制了他们量化样本的能力这项研究展示了一种特定而敏感的方法,用于检测参与饮食喂养研究的人类尿液中含有纳米晶体的钙,该研究包括摄入高…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢所有研究参与者和 UAB CCTS 生物营养核心和 UAB 高分辨率成像服务中心的贡献。这项工作得到了国家卫生研究院DK106284和DK123542(TM)和UL1TR003096(国家推进转化科学中心)的支持。

Materials

Benchtop Centrifuge Jouan Centrifuge CR3-12
Calcium Oxalate monohydrate Synthesized in the lab as previously described29. Store at RT; Stock 10 mM
Calcium Phosphate crystals (hydroxyapatite nanopowder) Sigma 677418 Store at RT; Stock 10 mM
Ethanol Fischer Scientific AC615095000 Store at RT; Stock 100%
Fluo-4 AM* AAT Bioquest, Inc. 20550 Store at Freezer (-20°C); Stock 5 mM
Gold Nanoparticles Sigma 742031 Store at 2-8°C
NanoSight Instrument Malvern Instruments, UK NS300
Syringe pump Harvard Apparatus 98-4730
Virkon Disinfectant LanXESS Energizing Company, Germany LSP
*Fluorescence dyes are light sensitive; stock and aliquots should be stored in the dark at -20°C.

Referências

  1. Fogazzi, G. B. Crystalluria: a neglected aspect of urinary sediment analysis. Nephrology, Dialysis, Transplantation. 11 (2), 379-387 (1996).
  2. Kuo, R. L. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney International. 64 (6), 2150-2154 (2003).
  3. Robertson, W. G., Peacock, M., Nordin, B. E. Calcium crystalluria in recurrent renal-stone formers. Lancet. 2 (7610), 21-24 (1969).
  4. Robertson, W. G., Peacock, M. Calcium oxalate crystalluria and inhibitors of crystallization in recurrent renal stone-formers. Clinical Science. 43 (4), 499-506 (1972).
  5. Hallson, P. C., Rose, G. A. A new urinary test for stone “activity”. British Journal of Urology. 50 (7), 442-448 (1978).
  6. Daudon, M., Hennequin, C., Boujelben, G., Lacour, B., Jungers, P. Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney International. 67 (5), 1934-1943 (2005).
  7. Baumann, J. M., Affolter, B. From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World Journal of Nephrology. 3 (4), 256-267 (2014).
  8. Patel, M., et al. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line. Redox Biology. 15, 207-215 (2018).
  9. Khan, S. R. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Experimental Nephrology. 98 (2), 55-60 (2004).
  10. Mulay, S. R., et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. Journal of Clinical Investigation. 123 (1), 236-246 (2013).
  11. Umekawa, T., Chegini, N., Khan, S. R. Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney International. 61 (1), 105-112 (2002).
  12. Huang, M. Y., Chaturvedi, L. S., Koul, S., Koul, H. K. Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Kidney International. 68 (2), 497-503 (2005).
  13. Lu, X. Renal tubular epithelial cell injury, apoptosis and inflammation are involved in melamine-related kidney stone formation. Urological Research. 40 (6), 717-723 (2012).
  14. Williams, J., Holmes, R. P., Assimos, D. G., Mitchell, T. Monocyte Mitochondrial Function in Calcium Oxalate Stone Formers. Urology. 93, 221-226 (2016).
  15. Balcke, P., et al. Transient hyperoxaluria after ingestion of chocolate as a high risk factor for calcium oxalate calculi. Nephron. 51 (1), 32-34 (1989).
  16. Khan, S. R., Kok, D. J. Modulators of urinary stone formation. Frontiers in Bioscience. 9, 1450-1482 (2004).
  17. Rodgers, A., Allie-Hamdulay, S., Jackson, G. Therapeutic action of citrate in urolithiasis explained by chemical speciation: increase in pH is the determinant factor. Nephrology, Dialysis, Transplantation. 21 (2), 361-369 (2006).
  18. Verplaetse, H., Verbeeck, R. M., Minnaert, H., Oosterlinck, W. Solubility of inorganic kidney stone components in the presence of acid-base sensitive complexing agents. European Urology. 11 (1), 44-51 (1985).
  19. Frochot, V., Daudon, M. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. International Journal of Surgery. 36, 624-632 (2016).
  20. Grover, P. K., Thurgood, L. A., Wang, T., Ryall, R. L. The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. BJU International. 105, 708-715 (2010).
  21. Bader, C. A., Chevalier, A., Hennequin, C., Jungers, P., Daudon, M. Methodological aspects of spontaneous crystalluria studies in calcium stone formers. Scanning Microscopy. 8 (2), 215-231 (1994).
  22. Daudon, M., Cohen-Solal, F., Jungers, P. . Eurolithiasis. 9th European Symposium on Urolithiasis. , 261-263 (2001).
  23. Werness, P. G., Bergert, J. H., Smith, L. H. Crystalluria. Journal of Crystal Growth. 53 (1), 166-181 (1981).
  24. Fan, J., Chandhoke, P. S. Examination of crystalluria in freshly voided urines of recurrent calcium stone formers and normal individuals using a new filter technique. Journal of Urology. 161 (5), 1685-1688 (1999).
  25. Sun, X. Y., Ouyang, J. M., Yu, K. Shape-dependent cellular toxicity on renal epithelial cells and stone risk of calcium oxalate dihydrate crystals. Scientific Reports. 7 (1), 7250 (2017).
  26. He, J. Y., Deng, S. P., Ouyang, J. M. Morphology, particle size distribution, aggregation, and crystal phase of nanocrystallites in the urine of healthy persons and lithogenic patients. IEEE Trans Nanobioscience. 9 (2), 156-163 (2010).
  27. Gao, J., et al. Comparison of Physicochemical Properties of Nano- and Microsized Crystals in the Urine of Calcium Oxalate Stone Patients and Control Subjects. Journal of Nanomaterials. 2014, 9 (2014).
  28. Gavin, C. T., et al. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis. Scientific Reports. 6, 19328 (2016).
  29. Kumar, P., et al. Dietary Oxalate Induces Urinary Nanocrystals in Humans. Kidney International Reports. 5 (7), 1040-1051 (2020).
  30. Carr, B., Hole, P., Malloy, A., Nelson, P., Smith, J. Applications of nanoparticle tracking analysis in nanoparticle research–A mini-review. European Journal of Parenteral Sciences and Pharmaceutical Sciences. 14 (2), 45 (2009).
  31. Dragovic, R. A., et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology, and Medicine. 7 (6), 780-788 (2011).
  32. Dragovic, R. A., et al. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods. 87, 64-74 (2015).
  33. Gercel-Taylor, C., Atay, S., Tullis, R. H., Kesimer, M., Taylor, D. D. Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Analytical Biochemistry. 428 (1), 44-53 (2012).
  34. Minta, A., Kao, J. P., Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. Journal of Biological Chemistry. 264 (14), 8171-8178 (1989).
  35. Harkins, A. B., Kurebayashi, N., Baylor, S. M. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3. Biophysical Journal. 65 (2), 865-881 (1993).
  36. Hernandez-Santana, A., Yavorskyy, A., Loughran, S. T., McCarthy, G. M., McMahon, G. P. New approaches in the detection of calcium-containing microcrystals in synovial fluid. Bioanalysis. 3 (10), 1085-1091 (2011).
  37. Tong, M., Brown, O. S., Stone, P. R., Cree, L. M., Chamley, L. W. Flow speed alters the apparent size and concentration of particles measured using NanoSight nanoparticle tracking analysis. Placenta. 38, 29-32 (2016).
  38. Maas, S. L., et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release. 200, 87-96 (2015).
  39. Hole, P., et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). Journal of Nanoparticle Research. 15, 2101 (2013).
  40. Tomlinson, P. R., et al. Identification of distinct circulating exosomes in Parkinson’s disease. Annals of Clinical and Translational Neurology. 2 (4), 353-361 (2015).
check_url/pt/62192?article_type=t

Play Video

Citar este artigo
Kumar, P., Bell, A., Mitchell, T. Estimation of Urinary Nanocrystals in Humans using Calcium Fluorophore Labeling and Nanoparticle Tracking Analysis. J. Vis. Exp. (168), e62192, doi:10.3791/62192 (2021).

View Video