Summary

顺磁弛豫增强,用于检测和表征固有无序蛋白质的自缔合

Published: September 23, 2021
doi:

Summary

提出了一种应用顺磁弛豫增强核磁共振波谱来检测固有无序蛋白质中弱和瞬态分子间和分子内相互作用的方案。

Abstract

蛋白质中的内在无序蛋白质和内在无序区域构成了人类蛋白质组的重要组成部分。这些序列的高度灵活性使它们能够与不同的生物分子伙伴形成弱的、长距离的和短暂的相互作用。特异性但低亲和力的相互作用促进混杂结合,并使单个固有无序片段与多个靶位点相互作用。由于这些相互作用的瞬时性质,它们很难通过依赖蛋白质形成单一主要构象的结构生物学方法进行表征。顺磁弛豫增强核磁共振是识别和定义弱相互作用和瞬态相互作用的结构基础的有用工具。描述了使用顺磁弛豫增强来表征固有无序蛋白质与其蛋白质、核酸或其他生物分子伙伴之间形成的低人口遭遇复合物的详细协议。

Introduction

内在疾病 (ID) 描述了蛋白质 (IDP) 或蛋白质中的区域 (IDR),它们不会自发折叠成稳定的二级或三级结构,但具有生物活性。通常,IDP / IDR的功能是在生理条件下促进与生物分子的特定但可逆的相互作用1。因此,IDP 和 IDR 参与一系列细胞功能,包括多蛋白复合物的募集、组织和稳定,例如剪接体2 的组装和活性、DNA 损伤位点组件的募集和组织3、转录复合物4 或染色质重塑剂 BAF5 的募集的组织和稳定.此外,IDP存在于信号连接处,它们对不同结合伴侣的混杂性使它们能够通过细胞蛋白网络介导信息传递6。最近的工作还揭示了IDR区域通过液-液相分离过程自缔合形成生物分子冷凝物的倾向7。许多涉及ID的上述功能现在也被认为涉及冷凝水形成8的某些方面。尽管ID对于生物分子复合物组装,稳定,支架和信号转导很重要,但它们特定相互作用的原子细节很难识别,因为IDP和IDR通常不适合使用X射线晶体学或低温电子显微镜进行结构研究。

核磁共振(NMR)是研究ID的理想技术,因为它不依赖于刚性或均匀结构集合的存在,而是报告单个细胞核的直接局部环境。给定分子中原子核的共振频率或化学位移受到局部电子分布引起的弱磁场的影响,而局部电子分布又取决于键长、角度、其他原子核的接近程度、与结合伙伴的相互作用以及其他因素9.因此,每个原子核都充当独特的、特定于位点的结构探针,对其局部化学环境的变化敏感。尽管有这些优点,核磁共振是一种体型技术,观察到的化学位移是特定原子核采样的所有环境的平均值。已经开发了一系列核磁共振技术(本期中描述了其中许多技术)来恢复平均化学位移中包含的高能量、低人口生物分子构象的结构、动态和动力学信息10,11。虽然是短暂填充的,但这些状态的识别和量化对于确定功能机制的细节很重要12。例如,在IDP和IDR的情况下,构象系综可能偏向于优先采样构象,这些构象对于与生理结合伴侣形成相遇复合物是有效的。检测这些状态,以及鉴定残基特异性分子间和分子内相互作用和动力学,对于确定蛋白质功能和复合物形成的潜在结构机制非常重要。

描述了使用顺磁弛豫增强(PRE)NMR来研究对IDP / IDR介导的生物分子复合物的形成很重要的瞬态,人口稀少的状态的协议13。这种方法可用于研究瞬时蛋白质-蛋白质相互作用,例如促进α-突触核蛋白14,15 的淀粉样纤维组装或 FUS 16 的自缔合的相互作用,以及表征特定的蛋白质-蛋白质相互作用,例如信号蛋白之间的相互作用17提出了一个自缔合IDP的例子,其中特定的分子间和分子内相互作用导致优先压缩状态以及驱动自缔合的位点特异性相互作用。

PRE起源于原子核与具有各向同性g张量的顺磁中心的磁偶极相互作用,通常以氮氧化物基团上的不成对电子的形式提供或作为顺磁性金属原子18图1)。虽然具有各向异性g张量的原子也会产生PRE效应,但由于伪接触位移(PCS)或残余偶极耦合(RDC)产生的混杂效应,对这些系统的分析更加困难13,19。原子核和顺磁中心之间相互作用的强度取决于两者之间的<r-6>距离。这种相互作用导致核弛豫速率的增加,即使对于长程相互作用(~10-35 Å),也会导致可检测的谱线展宽,因为未成对电子的磁矩非常强20,21。如果满足以下两个条件,则可以使用 PRE 检测瞬态;(1)瞬态相互作用在核磁共振时间尺度上处于快速交换状态(观察到的化学位移是交换态的群体加权平均值);(2)瞬态下原子核到顺磁中心的距离比主态短11。横向 PRE 表示Γ2,出于实际目的,根据包含顺磁中心和抗磁性对照的样品之间 1H 横向弛豫速率的差异计算得出。为了深入探讨快速和慢速交换制度中的PRE理论和相关伪接触位移,读者可以参考Clore及其同事的综合评论13,22。在这里,只考虑1H N-Γ2处于快速交换状态的情况,其中由于PRE的r-6依赖性,观察到的弛豫速率与顺磁中心接近原子核的距离以及在该构象中花费的时间有关。因此,不涉及接近的瞬态构象会产生较小的PRE,而较近的相互作用,即使是短暂的,也会产生较大的PRE。

对于 IDP,PRE 用于测量和区分单个分子(分子内)和单独分子(分子间)之间发生的相互作用。通过将顺磁中心连接到NMR可见(例如,15N标记)或NMR不可见(例如,天然丰度14N)蛋白上,可以确定PRE的来源(分子间或分子内)(图2)。引入半胱氨酸残基的定点诱变是将顺磁中心(自旋标记)连接到蛋白质的便捷方法23。已经提出了几种类型的分子用作自旋标记,包括金属螯合(基于EDTA)和自由基(基于氮氧化物)24。已经描述了各种氮氧化物自旋标记物,并且具有不同的半胱氨酸反应性化学物质,例如硫代磺酸盐,马来酰亚胺和碘乙酰胺25,26图1)。标签或接头的固有灵活性对于某些分析可能是有问题的,在这些情况下,已经提出了不同的策略来限制标签的运动,例如通过添加庞大的化学基团或使用第二个接头将标签锚定到蛋白质上(两个位点附着)2728.此外,市售标签可能含有非对映异构体蛋白,但通常这不会有助于观察到的PRE29。描述了通过马来酰亚胺化学连接到游离半胱氨酸上的3-Maleimido-PROXY的使用,因为它易于获得,具有成本效益,不可逆,并且还原剂三(2-羧乙基)膦(TCEP)可以在整个标记反应中维持在溶液中。由于3-Maleimido-PROXYL具有各向同性的g-张量,因此不会诱导PCS或RDC,并且相同的化学位移分配可用于顺磁性和抗磁性样品13

1HN-T 2 使用两个时间点策略(T a,T b)进行测量,该策略先前已被证明与收集由 8 到 12 个时间点30 组成的完整进化序列一样准确。第一个时间点(T a)设置为尽可能接近零,第二个时间点的最佳长度取决于给定样品的最大预期PRE的大小,可以由下式估计:Tb ~ 1.15/(R 2,dia + Γ 2),其中R 2,dia表示抗磁性样品13R 2如果最大 PREs 的大小未知,将 T b 设置为 ~ 蛋白质 1 H T 2 的 1倍是一个很好的初始估计,并通过调整 T2 来进一步优化以改善信噪比。这种两点测量策略显著减少了测量PRE所需的实验时间,并允许有更多的时间进行更多的信号平均,特别是因为使用相对稀释的样品来最小化分子之间非特异性接触的影响。基于HSQC的脉冲序列用于测量1H N-T2并在其他地方进行了详细描述30。为了提高灵敏度,前向和后向INEPT转移的硬脉冲可以用整形脉冲代替;或者,该序列容易地转换为基于TROSY的读出31。由于IDP通常具有更长的横向弛豫率,导致线宽(由于固有的紊乱)比类似大小的球状蛋白更窄,因此间接维度的长采集时间可用于提高光谱分辨率并减轻IDP固有的化学位移色散限制。

PRE是研究蛋白质-蛋白质和蛋白质-核酸相互作用的有用工具,特别是瞬时或人口稀少的相互作用。提供了用于制备适用于测量PRE的NMR样品的详细方案,包括蛋白质纯化,定点自旋标记,设置和校准脉冲程序,处理和解释NMR数据的步骤。自始至终都注意到了可能影响数据质量和实验结果的重要实验考虑因素,包括样品浓度、自旋标记的选择和顺磁性成分的去除。

Protocol

协议的一般要求:蛋白质纯化设施、紫外-可见光谱仪、高场核磁共振波谱仪和操作软件、后处理分析软件包括;NMRPipe 32,Sparky33(或CCPN分析34,或NMRViewJ35)。 1. 用于 PRE 测量的蛋白质的重组表达和纯化 为目标蛋白设计表达构建体,以便存在单个半胱氨酸残基。需要多个突变才能在感兴趣的蛋白质?…

Representative Results

分子内 1H N-Γ2 PRE 记录在源自 RNA 结合蛋白 EWSR142 的低复杂性结构域的自缔合、固有无序片段(残基 171-264)上(图 3)。与自旋标记附着点非常接近的残基(例如,图3中的残基178或260)预计将显着展宽,并且在光谱中无法检测到。从附着点依次间隔的残基显示出增强Γ 2在空间上接近自旋?…

Discussion

已经提出了一种使用PRE表征固有无序蛋白质和各种结合伴侣之间在低群体中存在的瞬时相互作用的方法。在所示的示例中,蛋白质是自缔合的,因此PRE可能来自分子间和分子内相互作用的组合。该方法很容易扩展到异质样品,其中可以表征两种不同蛋白质之间的相互作用。通过将自旋标记放置在蛋白质内的不同位置,可以获得有关蛋白质不同区域如何相互作用的补充信息。此外,通过在NMR活性(<…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢应金发博士和克里斯汀·卡诺博士的有益讨论和技术援助。DSL是圣鲍德里克学者,并感谢圣鲍德里克基金会(634706)的支持。这项工作得到了韦尔奇基金会(AQ-2001-20190330)对DSL的部分支持,Max and Minnie Tomerlin Voelcker基金(Voelcker基金会青年研究员资助DSL),UTHSA启动基金DSL,以及Greehey儿童健康研究生奖学金CNJ。这项工作基于在结构生物学核心设施中进行的研究,这是德克萨斯大学圣安东尼奥健康科学中心机构研究核心的一部分,由研究副总统办公室和梅斯癌症中心药物发现和结构生物学共享资源(NIH P30 CA054174)支持。

Materials

0.45 µm and 0.22 µm syringe filters Millipore Sigma SLHVM33RS
SLGVR33RS
Filter lysate before first purification step and before size exclusion chromatography.
100 mm Petri Dish Fisher FB0875713 Agar plates for bacterial transformation.
14N Ammonium chloride Sigma Aldrich 576794 Use of 15N in M9 medium will produce an NMR visible protein, 14N will produces an NMR invisible protein
15N Ammonium chloride Sigma Aldrich 299251 Use of 15N in M9 medium will produce an NMR visible protein, 14N will produces an NMR invisible protein
3 L Fernbach baffled flask Corning 431523 Bacterial expression culture
3-Maleimido-Proxyl Sigma Aldrich 253375 Nitroxide spin label
50 mL conical centrifuge tubes Thermo Fisher 14-432-22 Solution/protein storage
Amicon centrifugal filter Millipore Sigma UFC900308 Protein concentration
Ampicillan Sigma Aldrich A5354 Antibiotic for a selective marker, exact choice depends on the expression construct plasmid
Analytical balance Oahus 30061978 Explorer Pro, for weighing reagents
Ascorbic acid Sigma Aldrich AX1775 Reduces nitroxide spin label
Autoclave Sterilize glassware and culture media
Calcium chloride Sigma Aldrich C4901 M9 media component
Centrifuge bottles Thermo Fisher 010-1459 Harvest E. coli cells after recombinant protein expression
Centrifuge, hand-crank Thomas Scientific 0241C68 Boekel hand-driven, low-speed centrifuge with 15 mL buckets that can accommodate NMR tubes
Chelex 100 Sigma Aldrich C7901 Remove contaminating paramagnetic compounds from buffer solutions
Computer workstation Linux or Mac OS compatable with NMR data processing and analysis software packages such as NMRPipe and Sparky
Deuterium oxide Sigma Aldrich 151882 Needed for NMR lock signal
Dextrose Sigma Aldrich D9434 M9 media component
Dibasic Sodium Phosphate Sigma Aldrich S5136 M9 media component
Ellman's reagent (5,5-dithio-bis-(2-nitrobenzoic acid) Thermo Fisher 22582 Quantification of free cystiene residues
High speed centrifuge tubes Thermo Fisher 3114-0050 Used to clear bacterial lysate.
High-field NMR instrument (600 – 800 MHz) Bruker Equiped with a multichannel cryogenic probe and temperature control
IMAC column, HisTrap FF Cytvia 17528601 Initial fractionation of crude bacterial lysate
Isopropyl B-D-thiogalactoside (IPTG) Sigma Aldrich I6758 Induces protein expression for genes under control of lac operator
LB agar Thermo Fisher 22700025 Items are used for transforming E. coli to express protein of interest, substitions for any of these items with like products is acceptable.
LB broth Thermo Fisher 12780052
Low-pressure chromatography system Bio-Rad 7318300 BioRad BioLogic is used for low-pressure chomatograph such as running IMAC columns
Magnesium sulfate Sigma Aldrich M7506 M9 media component
Medium pressure chromatography system Bio-Rad 7880007 BioRad NGC equipped with a multi-wavelength detector, pH and conductivity monitors, and automatic fraction collector
MEM vitamin solution Sigma Aldrich M6895 M9 media component
Microfluidizer Avestin EmulsiFlex-C3 Provides rapid and efficient bacterial cell lysis
Micropipettes Thermo Fisher Calibrated set of micropippetters with properly fitting disposable tips (available from multiple manufacturers e.g. Eppendorf)
Monobasic potassium phosphate Sigma Aldrich 1551139 M9 media component
NMR pipettes Sigma Aldrich 255688 To remove sample from NMR tube
NMR sample tube NewEra NE-SL5 Suitable for high-field NMR spectrometers
Preparative Centrifuge Beckman Coulter Avanti J-HC Harvest E. coli cells after recombinant protein expression
Round bottom polystyrene centrifuge tubes Corning 352057 Clear bacterial lysate
Shaking incubator Eppendorf S44I200005 Temperature controlled growth of E. coli starter and expression cultures
Sodium chloride Sigma Aldrich S5886 M9 media component
Sonicating water bath and vacuum source Thomas Scientific Used to degas buffer solutions
Sonicator Thermo Fisher FB505110 Used for bacterial cell lysis or shearing bacterial DNA
Spectrophotometer Implen OD600 Diluphotometer Monitor growth of E.coli protein expression cultures
Superdex 200 16/600 size exculsion colum Cytvia 28989333 Final protein purification step
Topspin software, version 3.2 or later Bruker Operating software for the NMR instrument
Transformation competent E. coli cells Thermo Fisher C600003 One Shot BL21 Star (DE3) chemically competent E. coli, other strains may be compatable
Tris(2-carboxyethyl)phosphine (TCEP) ThermoFisher 20490 Reducing agent compatable with some sulfhydryl-reactive conjugations
UV-Vis spectrophotometer Implen NP80 Measure protein concentration.
Water bath, temperature controlled ThermoFisher FSGPD25 For heat shock step of bacterial transformation
Yeast extract Sigma Aldrich Y1625 For supplementing M9 media if required

Referências

  1. Dyson, H. J., Wright, P. E. Intrinsically unstructured proteins and their functions. Nature Reviews: Molecular Cell Biology. 6 (3), 197-208 (2005).
  2. Korneta, I., Bujnicki, J. M. Intrinsic disorder in the human spliceosomal proteome. PLoS Computational Biology. 8 (8), 1002641 (2012).
  3. Frege, T., Uversky, V. N. Intrinsically disordered proteins in the nucleus of human cells. Biochemistry and Biophysics Reports. 1, 33-51 (2015).
  4. Liu, J., et al. Intrinsic disorder in transcription factors. Bioquímica. 45 (22), 6873-6888 (2006).
  5. El Hadidy, N., Uversky, V. N. Intrinsic disorder of the BAF complex: Roles in chromatin remodeling and disease development. International Journal of Molecular Sciences. 20 (21), (2019).
  6. Wright, P. E., Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews: Molecular Cell Biology. 16 (1), 18-29 (2015).
  7. Brangwynne, C. P. Phase transitions and size scaling of membrane-less organelles. Journal of Cell Biology. 203 (6), 875-881 (2013).
  8. Shin, Y., Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science. 357 (6357), (2017).
  9. Cavanagh, J. . Protein NMR spectroscopy : principles and practice. 1st edition. , (2018).
  10. Sekhar, A., Kay, L. E. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proceedings of the National Academy of Sciences of the United States of America. 110 (32), 12867-12874 (2013).
  11. Anthis, N. J., Clore, G. M. Visualizing transient dark states by NMR spectroscopy. Quarterly Reviews of Biophysics. 48 (1), 35-116 (2015).
  12. Alderson, T. R., Kay, L. E. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell. 184 (3), 577-595 (2021).
  13. Clore, G. M., Iwahara, J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chemical Reviews. 109 (9), 4108-4139 (2009).
  14. Wu, K. P., Baum, J. Detection of transient interchain interactions in the intrinsically disordered protein alpha-synuclein by NMR paramagnetic relaxation enhancement. Journal of the American Chemical Society. 132 (16), 5546-5547 (2010).
  15. Janowska, M. K., Wu, K. P., Baum, J. Unveiling transient protein-protein interactions that modulate inhibition of alpha-synuclein aggregation by beta-synuclein, a pre-synaptic protein that co-localizes with alpha-synuclein. Scientific Reports. 5, 15164 (2015).
  16. Murthy, A. C., et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nature Structural & Molecular Biology. 26 (7), 637-648 (2019).
  17. Fawzi, N. L., Doucleff, M., Suh, J. Y., Clore, G. M. Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements. Proceedings of the National Academy of Sciences of the United States of America. 107 (4), 1379-1384 (2010).
  18. Griffith, O. H., Waggoner, A. S. Nitroxide free radicals: spin labels for probing biomolecular structure. Accounts of Chemical Research. 2 (2), 17-24 (1969).
  19. Bertini, I., Luchinat, C., Parigi, G., Ravera, E. . NMR of Paramagnetic Macromolecules, Applications to Metallobiomolecules and Models. 2 edn. , (2016).
  20. Bloembergen, N., Purcell, E. M., Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Physical Review. 73 (7), 679-712 (1948).
  21. Solomon, I. Relaxation processes in a system of two spins. Physical Review. 99 (2), 559 (1955).
  22. Clore, G. M. Practical aspects of paramagnetic relaxation enhancement in biological macromolecules. Methods in Enzymology. 564, 485-497 (2015).
  23. Klare, J. P. Site-directed spin labeling EPR spectroscopy in protein research. Biological Chemistry. 394 (10), 1281-1300 (2013).
  24. Clore, G. M., Tang, C., Iwahara, J. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Current Opinion in Structural Biology. 17 (5), 603-616 (2007).
  25. Melanson, M., Sood, A., Torok, F., Torok, M. Introduction to spin label electron paramagnetic resonance spectroscopy of proteins. Biochemistry and Molecular Biology Education. 41 (3), 156-162 (2013).
  26. Czogalla, A., Pieciul, A., Jezierski, A., Sikorski, A. F. Attaching a spin to a protein — site-directed spin labeling in structural biology. Acta Biochimica Polonica. 54 (2), 235-244 (2007).
  27. Lindfors, H. E., de Koning, P. E., Drijfhout, J. W., Venezia, B., Ubbink, M. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. Journal of Biomolecular NMR. 41 (3), 157-167 (2008).
  28. Fawzi, N. L., et al. A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data. Journal of Biomolecular NMR. 51 (1-2), 105-114 (2011).
  29. Bleicken, S., et al. gem-Diethyl pyrroline nitroxide spin labels: Synthesis, EPR characterization, rotamer libraries and biocompatibility. ChemistryOpen. 8 (8), 1035 (2019).
  30. Iwahara, J., Tang, C., Clore, G. M. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. Journal of Magnetic Resonance. 184, 185-195 (2007).
  31. Venditti, V., Fawzi, N. L. Probing the atomic structure of transient protein contacts by paramagnetic relaxation enhancement solution NMR. Methods in Molecular Biology. 1688, 243-255 (2018).
  32. Delaglio, F., et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR. 6 (3), 277-293 (1995).
  33. Lee, W., Tonelli, M., Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 31 (8), 1325-1327 (2015).
  34. Vranken, W. F., et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins. 59 (4), 687-696 (2005).
  35. Johnson, B. A. Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods in Molecular Biology. 278, 313-352 (2004).
  36. Sjodt, M., Clubb, R. T. Nitroxide labeling of proteins and the determination of paramagnetic relaxation derived distance restraints for NMR studies. Bio-Protocol. 7 (7), (2017).
  37. Zhang, H., van Ingen, H. Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Current Opinion in Structural Biology. 38, 75-82 (2016).
  38. Rabdano, S. O., et al. Onset of disorder and protein aggregation due to oxidation-induced intermolecular disulfide bonds: case study of RRM2 domain from TDP-43. Scientific Reports. 7 (1), 11161 (2017).
  39. Burns, J. A., Butler, J. C., Moran, J., Whitesides, G. M. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. Journal of Organic Chemistry. 56 (8), 2648-2650 (1991).
  40. Ellman, G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 82 (1), 70-77 (1959).
  41. Binbuga, B., Boroujerdi, A. F., Young, J. K. Structure in an extreme environment: NMR at high salt. Protein Science. 16 (8), 1783-1787 (2007).
  42. Schwartz, J. C., Cech, T. R., Parker, R. R. Biochemical properties and biological functions of FET proteins. Annual Review of Biochemistry. 84, 355-379 (2015).
  43. Nabuurs, S. M., de Kort, B. J., Westphal, A. H., van Mierlo, C. P. Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. European Biophysics Journal. 39 (4), 689-698 (2010).
  44. Wiedemann, C., Kumar, A., Lang, A., Ohlenschlager, O. Cysteines and disulfide bonds as structure-forming units: Insights from different domains of life and the potential for characterization by NMR. Frontiers in Chemistry. 8, 280 (2020).
  45. Wommack, A. J., et al. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Bioquímica. 51 (48), 9624-9637 (2012).
  46. Taylor, A. M., et al. Detailed characterization of cysteine-less P-glycoprotein reveals subtle pharmacological differences in function from wild-type protein. British Journal of Pharmacology. 134 (8), 1609-1618 (2001).
  47. Hu, K., Doucleff, M., Clore, G. M. Using multiple quantum coherence to increase the 15N resolution in a three-dimensional TROSY HNCO experiment for accurate PRE and RDC measurements. Journal of Magnetic Resonance. 200 (2), 173-177 (2009).
  48. Anthis, N. J., Doucleff, M., Clore, G. M. Transient, sparsely populated compact states of apo and calcium-loaded calmodulin probed by paramagnetic relaxation enhancement: interplay of conformational selection and induced fit. Journal of the American Chemical Society. 133 (46), 18966-18974 (2011).
  49. Battiste, J. L., Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Bioquímica. 39 (18), 5355-5365 (2000).
  50. Donaldson, L. W., et al. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. Journal of the American Chemical Society. 123 (40), 9843-9847 (2001).
  51. Gaponenko, V., et al. Protein global fold determination using site-directed spin and isotope labeling. Protein Science. 9 (2), 302-309 (2000).
  52. Trindade, I. B., Invernici, M., Cantini, F., Louro, R. O., Piccioli, M. PRE-driven protein NMR structures: an alternative approach in highly paramagnetic systems. FEBS Journal. 288 (9), 3010-3023 (2021).
  53. Nitsche, C., Otting, G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Progress in Nuclear Magnetic Resonance Spectroscopy. 98-99, 20-49 (2017).
check_url/pt/63057?article_type=t

Play Video

Citar este artigo
Johnson, C. N., Libich, D. S. Paramagnetic Relaxation Enhancement for Detecting and Characterizing Self-Associations of Intrinsically Disordered Proteins. J. Vis. Exp. (175), e63057, doi:10.3791/63057 (2021).

View Video