Summary

Создание ксенотрансплантатов, полученных от пациентов с рыбками данио, из рака поджелудочной железы для тестирования на химиочувствительность

Published: May 12, 2023
doi:

Summary

Доклинические модели направлены на расширение знаний о биологии рака и прогнозирование эффективности лечения. В этой статье описывается генерация ксенотрансплантатов пациента (zPDX) на основе рыбок данио-рерио с фрагментами опухолевой ткани. Лечение zPDX проводили химиотерапией, терапевтический эффект которой оценивали с точки зрения клеточного апоптоза трансплантированной ткани.

Abstract

Рак является одной из основных причин смерти во всем мире, и заболеваемость многими видами рака продолжает расти. Значительный прогресс был достигнут с точки зрения скрининга, профилактики и лечения; Тем не менее, доклинические модели, которые предсказывают профиль химиочувствительности онкологических больных, все еще отсутствуют. Чтобы восполнить этот пробел, была разработана и проверена модель ксенотрансплантата, полученная от пациента in vivo . Модель была основана на эмбрионах рыбок данио-рерио (Danio rerio) через 2 дня после оплодотворения, которые использовались в качестве реципиентов ксенотрансплантатных фрагментов опухолевой ткани, взятых из хирургического образца пациента.

Также стоит отметить, что биоптические образцы не были переварены или дезагрегированы, чтобы сохранить микроокружение опухоли, что имеет решающее значение с точки зрения анализа поведения опухоли и ответа на терапию. В протоколе подробно описан метод получения ксенотрансплантатов пациента (zPDX) на основе рыбок данио-рерио после хирургической резекции первичной солидной опухоли. После скрининга у анатомопатолога образец препарируют с помощью лезвия скальпеля. Некротизированная ткань, сосуды или жировая ткань удаляются, а затем измельчаются на кусочки размером 0,3 мм x 0,3 мм x 0,3 мм.

Затем кусочки флуоресцентно маркируют и ксенотрансплантируют в перивителлиновое пространство эмбрионов рыбок данио. Большое количество эмбрионов может быть обработано с низкими затратами, что позволяет проводить высокопроизводительный анализ in vivo химиочувствительности zPDX к нескольким противоопухолевым препаратам. Конфокальные изображения обычно получаются для обнаружения и количественной оценки уровней апоптоза, вызванных химиотерапией, по сравнению с контрольной группой. Процедура ксенотрансплантата имеет значительное преимущество во времени, поскольку она может быть завершена за один день, что обеспечивает разумное временное окно для проведения терапевтического скрининга для совместных клинических испытаний.

Introduction

Одна из проблем клинических исследований рака заключается в том, что рак – это не отдельное заболевание, а множество различных заболеваний, которые могут развиваться с течением времени, требуя специфических методов лечения в зависимости от особенностей самой опухолии пациента1. Следовательно, задача состоит в том, чтобы перейти к исследованиям рака, ориентированным на пациента, чтобы определить новые персонализированные стратегии для раннего прогнозирования результатов лечения рака2. Это особенно актуально для аденокарциномы протоков поджелудочной железы (PDAC), поскольку она считается трудно поддающимся лечению раком с 5-летней выживаемостью 11%3.

Поздняя диагностика, быстрое прогрессирование и отсутствие эффективных методов лечения остаются наиболее актуальными клиническими проблемами PDAC. Таким образом, основная задача состоит в том, чтобы смоделировать пациента и определить биомаркеры, которые могут быть применены в клинике, чтобы выбрать наиболее эффективную терапию в соответствии с персонализированной медициной 4,5,6. Со временем были предложены новые подходы к моделированию раковых заболеваний: органоиды, полученные от пациента (PDO), и ксенотрансплантаты, полученные от пациентов от мышей (mPDX), происходят из источника опухолевой ткани человека. Они были использованы для воспроизведения заболевания для изучения ответа и резистентности к терапии, а также рецидива заболевания 7,8,9.

Аналогичным образом, возрос интерес к моделям ксенотрансплантатов, полученных из пациентов (zPDX) на основе рыбок данио, благодаря их уникальным и многообещающим характеристикам10, представляющим собой быстрый и недорогой инструмент для исследования рака11,12. Модели zPDX требуют лишь небольшого размера выборки опухоли, что делает возможным высокопроизводительный скрининг химиотерапии13. Наиболее распространенный метод, используемый для моделей zPDX, основан на полном переваривании образца и имплантации первичных клеточных популяций, что частично воспроизводит опухоль, но имеет недостатки в виде отсутствия микроокружения опухоли и перекрестных помех между злокачественными и здоровыми клетками14.

Эта работа показывает, как zPDX могут быть использованы в качестве доклинической модели для определения профиля химиочувствительности пациентов с раком поджелудочной железы. Ценная стратегия облегчает процесс ксенотрансплантата, поскольку нет необходимости в расширении клеток, что позволяет ускорить химиотерапевтический скрининг. Сила модели заключается в том, что все компоненты микроокружения сохраняются в том виде, в каком они находятся в раковой ткани пациента, поскольку, как известно, поведение опухоли зависит от их взаимодействия15,16. Это очень выгодно по сравнению с альтернативными методами в литературе, поскольку можно сохранить гетерогенность опухоли и способствовать улучшению предсказуемости исхода лечения и рецидива в зависимости от конкретного пациента, что позволяет использовать модель zPDX в совместных клинических испытаниях. В этой рукописи описываются этапы, связанные с созданием модели zPDX, начиная с фрагмента резекции опухоли пациента и его лечения для анализа ответа на химиотерапию.

Protocol

Министерство здравоохранения Италии одобрило все описанные эксперименты на животных в соответствии с Директивой 2010/63/ЕС об использовании животных и уходе за ними. Местный этический комитет одобрил исследование под регистрационным номером 70213. Информированное согласие было получено ?…

Representative Results

Этот протокол описывает экспериментальный подход к установлению zPDX из первичной аденокарциномы поджелудочной железы человека. Образец опухоли собирали, измельчали и окрашивали с использованием флуоресцентного красителя, как описано в разделе протокола 4. Затем zPDX были успешно устан?…

Discussion

Модели in vivo в исследованиях рака предоставляют бесценные инструменты для понимания биологии рака и прогнозирования ответа на лечение рака. В настоящее время доступны различные модели in vivo , например, генетически модифицированные животные (трансгенные и нокаутные мыши) или кс…

Declarações

The authors have nothing to disclose.

Acknowledgements

Эта работа финансировалась Фондом Пизы (проект 114/16). Авторы хотели бы поблагодарить Раффаэле Гаэту из отделения гистопатологии Azienda Ospedaliera Pisana за отбор образцов пациентов и поддержку патологии. Мы также благодарим Алессию Галанте за техническую поддержку в экспериментах. Эта статья основана на работе COST Action TRANSPAN, CA21116, при поддержке COST (Европейское сотрудничество в области науки и техники).

Materials

5-fluorouracil Teva Pharma AG SMP 1532755
48 multiwell plate Sarstedt 83 3923
96 multiwell plate Sarstedt 82.1581.001
Acetone Merck 179124
Agarose powder  Merck A9539
Amphotericin Thermo Fisher Scientific 15290018
Anti-Nuclei Antibody, clone 235-1 Merck MAB1281  1:200 dilution
Aquarium net QN6 Penn-plax 0-30172-23006-6
BSA Merck A9418
CellTrace Thermo Fisher Scientific C34567
CellTracker CM-DiI  Thermo Fisher Scientific C7001
CellTracker Deep Red  Thermo Fisher Scientific C34565
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb Cell Signaling Technology 9661S 1:250 dilution
Dimethyl sulfoxide (DMSO)  PanReac AppliChem ITW Reagents A3672,0250
Dumont #5 forceps World Precision Instruments 501985
Folinic acid -  Lederfolin Pfizer
Glass capillaries, 3.5" Drummond Scientific Company 3-000-203-G/X Outer diameter = 1.14 mm. Inner diameter = 0.53 mm. 
Glass vials  VWR International WHEAW224581
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 Thermo Fisher Scientific A-21244   1:500 dilution
Goat serum Thermo Fisher Scientific 31872
Hoechst 33342 Thermo Fisher Scientific H3570
Irinotecan Hospira
Low Temperature Freezer Vials VWR International 479-1220
McIlwain Tissue Chopper World Precision Instruments
Microplate Mixer SCILOGEX 822000049999
Oxaliplatin Teva
Paraformaldehyde Merck P6148-500G
PBS Thermo Fisher Scientific 14190094
Penicillin-streptomycin  Thermo Fisher Scientific 15140122
Petri dish 100 mm Sarstedt 83 3902500
Petri dish 60 mm Sarstedt 83 3901
Plastic Pasteur pipette Sarstedt 86.1171.010
Poly-Mount Tebu-bio 18606-5
Propidium iodide Merck P4170
RPMI-1640 medium Thermo Fisher Scientific 11875093
Scalpel blade No 10 Sterile Stainless Steel VWR International SWAN3001
Scalpel handle #3 World Precision Instruments 500236
Tricaine Merck E10521
Triton X-100  Merck T8787
Tween 20 Merck P9416
Vertical Micropipette Puller Shutter instrument P-30 

Referências

  1. Rubin, H. Understanding cancer. Science. 219 (4589), 1170-1172 (1983).
  2. Krzyszczyk, P., et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 6 (3-4), 79-100 (2018).
  3. Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer statistics, 2022. CA Cancer Journal for Clinicians. 72 (1), 7-33 (2022).
  4. Trunk, A., et al. Emerging treatment strategies in pancreatic cancer. Pancreas. 50 (6), 773-787 (2021).
  5. Moffat, G. T., Epstein, A. S., O’Reilly, E. M. Pancreatic cancer-A disease in need: Optimizing and integrating supportive care. Cancer. 125 (22), 3927-3935 (2019).
  6. Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G., Karamouzis, M. V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World Journal of Gastrointestinal Oncology. 12 (2), 173-181 (2020).
  7. Marshall, L. J., Triunfol, M., Seidle, T. Patient-derived xenograft vs. organoids: a preliminary analysis of cancer research output, funding and human health impact in 2014-2019. Animals. 10 (10), 1923 (2020).
  8. Li, Y., Tang, P., Cai, S., Peng, J., Hua, G. Organoid based personalized medicine: from bench to bedside. Cell Regeneration. 9 (1), 21 (2020).
  9. Jung, J., Seol, H. S., Chang, S. The generation and application of patient-derived xenograft model for cancer research. Cancer Research and Treatment. 50 (1), 1-10 (2018).
  10. Rizzo, G., Bertotti, A., Leto, S. M., Vetrano, S. Patient-derived tumor models: a more suitable tool for pre-clinical studies in colorectal cancer. Journal of Experimental & Clinical Cancer Research. 40 (1), 178 (2021).
  11. Usai, A., et al. Zebrafish patient-derived xenografts identify chemo-response in pancreatic ductal adenocarcinoma patients. Cancers. 13 (16), 4131 (2021).
  12. Usai, A., et al. A model of a zebrafish avatar for co-clinical trials. Cancers. 12 (3), 677 (2020).
  13. Chen, X., Li, Y., Yao, T., Jia, R. Benefits of zebrafish xenograft models in cancer research. Frontiers in Cell and Developmental Biology. 9, 616551 (2021).
  14. Miserocchi, G., et al. Management and potentialities of primary cancer cultures in preclinical and translational studies. Journal of Translational Medicine. 15 (1), 229 (2017).
  15. Baghban, R., et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 18 (1), 59 (2020).
  16. Albini, A., et al. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connective Tissue Research. 56 (5), 414-425 (2015).
  17. Avdesh, A., et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. Journal of Visualized Experiments. (69), e4196 (2012).
  18. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  19. Tavares Barroso, M., et al. Establishment of pancreatobiliary cancer zebrafish avatars for chemotherapy screening. Cells. 10 (8), 2077 (2021).
  20. Kopetz, S., Lemos, R., Powis, G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clinical Cancer Research. 18 (19), 5160-5162 (2012).
  21. Xing, F., Saidou, J., Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in Bioscience. 15 (1), 166-179 (2010).
  22. Strähle, U., et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology. 33 (2), 128-132 (2012).
  23. Hidalgo, M., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 4 (9), 998-1013 (2014).
check_url/pt/63744?article_type=t

Play Video

Citar este artigo
Usai, A., Di Franco, G., Gabellini, C., Morelli, L., Raffa, V. Establishment of Zebrafish Patient-Derived Xenografts from Pancreatic Cancer for Chemosensitivity Testing. J. Vis. Exp. (195), e63744, doi:10.3791/63744 (2023).

View Video